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Preface

In this book, we present a collection of papers around the topic of agent commu-
nication. The communication between agents has been one of the major topics
of research in multiagent systems. The current work can therefore build on a
number of previous Workshops of which the proceedings have been published
in earlier volumes in this series. The basis of this collection is formed by the
accepted submissions of the Workshop on Agent Communication held in con-
junction with the AAMAS Conference in July 2004 in New York. The workshop
received 26 submissions of which 14 were selected for publication in this vol-
ume. Besides the high-quality workshop papers we noticed that many papers
on agent communication found their way to the main conference. We decided
therefore to invite a number of authors to revise and extend their papers from
this conference and to combine them with the workshop papers. We believe that
the current collection comprises a very good and quite complete overview of the
state of the art in this area of research and gives a good indication of the topics
that are of major interest at the moment.

The papers can roughly be divided over the following five themes:

– social commitments
– multiparty communication
– content languages
– dialogues and conversations
– speech acts

Although these themes are of course not mutually exclusive they indicate some
main directions of research. We therefore have arranged the papers in the book
according to the topics indicated above.

The first three papers focus on the role of social commitments in agent com-
munication. In the first paper, Nicoletta Fornara, Fransesco Viganò and Marco
Colombetti explore the role of social commitments in defining the semantics
of agent communication in the context of artificial institutions. Roberto Flores,
Philippe Pasquier and Brahim Chaib-draa formalize the dynamics of social com-
mitments, where they stress the role of commitment messages as coordination
devices to advance the state of joint activities. In the subsequent contribution,
Ashok Mallya and Munindar Singh use social commitments as a semantic un-
derpinning of a formal framework to reason about the composition of interaction
protocols.

The next two contributions involve communication between more than two
agents. Gery Gutnik and Gal Kaminka address the representation of interaction
protocols by means of Petri nets. In particular, the authors focus on protocols for
overhearing in which more than two agents are involved. The theme of multiparty
communication is further elaborated in the contribution of Marc-Philippe Huget
and Yves Demazeau, where a communication server for multiparty dialogue is
described.
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The following two contributions focus on the role of vocabularies, ontolo-
gies and content languages in agent communication. Jurriaan van Diggelen,
Robbert-Jan Beun, Frank Dignum, Rogier van Eijk and John-Jules Meyer study
the characteristics and properties of communication vocabularies in multiagent
systems with heterogeneous ontologies. Mario Verdicchio and Marco Colombetti
deal with another aspect of content languages: the formal expression of temporal
conditions.

The first paper of the section on dialogues and conversations is by Jarred
McGinnis and David Robertson who define a general language for the expression
of dynamic and flexible dialogue protocols. The flexibility of protocols is further
elaborated in the contribution of Lalana Kagal and Tim Finin where conversa-
tion specifications and conversation policies are defined in terms of permissions
and obligations. The authors introduce techniques to resolve conflicts within the
specifications and policies and provide an engine that allows agents to reason
about their conversations. In the next paper, Joris Hulstijn, Mehdi Dastani and
Frank Dignum study the coherence of agent conversations. In particular, they
show how constraints on the context of messages can be used to establish coher-
ent dialogues. The importance of the context is also stressed in the contribution
of Matthias Nickles, Michael Rovatsos and Gerhard Weiss who study the effects
of social interaction structures on the semantics of messages. Mirko Viroli and
Alessandro Ricci look at communication from the perspective of coordination.
In their approach, agents coordinate their activities via artifacts that specify the
successive actions of the interaction protocol.

The last four contributions of the volume are centered around the semantics
of speech acts. Karim Bouzouba, Jamal Bentahar and Bernard Moulin develop
a computation model to study the semantics of speech acts in dialogues between
agents and humans. In the subsequent contribution, Peter McBurney and Si-
mon Parsons propose a set of speech acts together with an interaction protocol
for argumenation for which they provide an operational semantics. In the con-
tribution of Marcus Huber, Sanjeev Kumar and David McGee, a repertory of
speech acts is provided, where the semantics of the acts is defined in terms of
joint intentions. Finally, Shakil Khan and Yves Lesperance study the semantics
of speech acts in terms of the agents’ knowledge, intentions and commitments
and show how this can be integrated into a planning framework.

To close, we would like to take this opportunity to thank the members of
the Program Committee, the external reviewers and the authors of submitted
papers for enabling us to edit this exciting volume on the Developments in Agent
Communication.

Utrecht, November 2004 Rogier van Eijk
Marc-Philippe Huget

Frank Dignum



Workshop Organization

Organizing Committee

Rogier van Eijk Utrecht University, Utrecht, The Netherlands
Marc-Philippe Huget Laboratoire LEIBNIZ, Institut IMAG, France
Frank Dignum Utrecht University, Utrecht, The Netherlands

Program Committee

Leila Amgoud IRIT (France)
Brahim Chaib-draa Laval University (Canada)
Phil Cohen Oregon Health and Science University (USA)
Marco Colombetti Politecnico di Milano (Italy)
Mehdi Dastani Utrecht University (The Netherlands)
Amal El Fallah-Seghrouchni University of Paris 6 (France)
Frank Guerin University of Aberdeen (UK)
Mark d’Inverno Westminster University (UK)
Andrew Jones King’s College, London (UK)
Yannis Labrou Fujitsu Laboratories (USA)
Nicolas Maudet University of Paris 9 (France)
Peter McBurney University of Liverpool (UK)
Simon Parsons Brooklyn College, City University of NY (USA)
Shamima Paurobally University of Southampton (UK)
Nico Roos Maastricht University (The Netherlands)
Munindar Singh North Carolina State University (USA)
Gerhard Weiss Technical University Munich (Germany)
Michael Wooldridge University of Liverpool (UK)

External Reviewers

Sanjeev Kumar
Jan Broersen
Roberto Flores
Jamal Bentahar
Philippe Pasquier
Michael Rovatsos
Matthias Nickles



Table of Contents

Section I: Social Commitments

Agent Communication and Institutional Reality
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Agent Communication and Institutional Reality�

Nicoletta Fornara1, Francesco Viganò1, and Macro Colombetti1,2

1 Università della Svizzera italiana, via G. Buffi 13, 6900 Lugano, Switzerland
{nicoletta.fornara, francesco.vigano, marco.colombetti}@lu.unisi.ch

2 Politecnico di Milano, piazza Leonardo Da Vinci 32, Milano, Italy
marco.colombetti@polimi.it

Abstract. In this paper we propose to regard an Agent Communica-
tion Language (ACL) as a set of conventions to act on a fragment of
institutional reality, defined in the context of an artificial institution.
Within such an approach, we first reformulate a previously proposed
commitment-based semantics for ACLs. In particular we show that all
commonly used types of communicative acts can be defined in terms of
a single basic type, namely declarations, within an artificial institution
that we call Basic Institution. We then go on defining special institutions,
that augment the Basic Institution by adding ontological and normative
elements. Finally, as an example of a special institution we give a partial
definition of the institution of English Auctions.

1 Introduction

In the last few years the concept of social commitment has been largely used by a
growing number of researchers to define the semantics of Agent Communication
Languages (ACLs). After the first studies carried out by Singh and by Colombetti
[28, 5], further investigations have been carried out from an operational point of
view [12, 19], following a logical approach [30], and in the field of argumentation
studies [1, 3]. The main advantages of this approach are that commitments are
objective and independent of an agent’s internal structure, and that it is possible
to verify whether an agent is behaving according to the given semantics.

Social commitments are used to represent the evolution of social relation-
ships among agents during interactions. Communicative acts are then viewed as
actions carried out to modify such relationships by creating, updating or can-
celling commitments according to a predefined set of shared rules [30, 13]. More
precisely, communicative acts are regarded as a sort of institutional actions, that
is, as actions performed within an institution to modify a fragment of social re-
ality [25]. Defining the semantics of an ACL has therefore two sides: one side is
the definition of the institutional effects brought about by the performance of
communicative acts; the other side is the definition of the social context in which

� Supported by Swiss National Science Foundation project 200021-100260, ”An Open
Interaction Framework for Communicative Agents”.

R.M. van Eijk et al. (Eds.): AC 2004, LNAI 3396, pp. 1–17, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 N. Fornara, F. Viganò, and M. Colombetti

agents can carry out institutional actions, and that we call an (artificial) insti-
tution. Indeed, our main tenet is that without the definition of an appropriate
institution it is impossible to specify the semantics of an ACL.

This paper is structured as follows. In Section 2 we introduce the fundamen-
tal concepts on which we base our treatment of agent communication, namely
the concepts of an institutional action, of a convention, and of a ”counts as” rela-
tionship between an instrumental action and the corresponding communicative
act. In Section 3 we define the institutional actions that can be performed on
commitments. In Section 4 we describe the Basic Institution (i.e., the institution
that regulates the management of commitments) and introduce the concept of
a special institution. In Section 5 we give a partial description of a specific case
of a special institution, that is, the institution of English Auctions. In Section 6
we briefly remark on related work present in this volume. Finally in Section 7
we draw some conclusions and delineate some directions for future work.

2 Fundamental Concepts

We view a multiagent system (MAS) as a technological extension of human so-
ciety, by which individual persons and human organizations can delegate the ex-
ecution of institutional actions to the artificial system. Examples of such actions
are establishing appointments, signing contracts, and carrying out commercial
transactions. For this reason there are strong connections between some aspects
of a MAS and some aspects of human society, and therefore the concepts used to
model a MAS interaction framework have to reflect some crucial characteristics
of their human counterpart.

The context within which artificial agents operate can be modelled as con-
sisting of a set of entities that can have natural or institutional attributes, that
is, attributes that exist only thanks to the common agreement of the interacting
agents (or more precisely of their users). For example, the color of a book is
a natural attribute, while the book’s price and its owner are institutional at-
tributes. Natural attributes are assumed to reflect the physical properties of the
corresponding entities of the real world, and typically cannot be changed by
artificial agents (unless the agent controls a physical robot). On the contrary,
institutional attributes can be affected by institutional actions performed by
purely software agents.

2.1 Institutional Actions

Institutional actions are particular types of actions [7] that are crucial for the for-
malization of communicative interactions taking place in open interaction frame-
works. The effect of institutional actions is to change institutional attributes,
that exist only thanks to common agreement. Therefore, agents cannot perform
such actions by exploiting causal links occurring in the natural world, as it would
be done to open a door or to remove a physical object. Rather, as we shall see,
institutional actions are performed on the basis of a shared set of conventions.
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Because of their intrinsic social nature, a crucial condition for the actual per-
formance of institutional actions is that they must be public, that is, made known
to the relevant agents by means of some action that can be directly executed by
an artificial agent. It is therefore natural to assume that all institutional actions
are performed by sending suitable messages to the relevant agents. An example
of institutional action, that will be discussed in Section 5, is the act of opening
an auction; as we shall see, an agent (the auctioneer) can perform such an action
by sending a suitable message to the relevant group of agents (the participants).
However, the act of sending the message is merely instrumental, and should not
be confused with the institutional action of opening the auction.

We define institutional actions by specifying their preconditions and postcon-
ditions, therefore abstracting from the way in which such actions are concretely
carried out. More precisely, an institutional action is characterized by:

– an action name followed by a possibly empty list of parameters;
– a possibly empty set of (ontological) preconditions, that specify the values

that certain institutional attributes must have for the action to be meaningful
(for example, opening an auction is meaningful only if the auction is not
already open);

– a nonempty set of postconditions, that specify the values of certain institu-
tional attributes after a successful performance of the action.

2.2 Instrumental Actions

As we have already remarked, an institutional action is performed by executing
an instrumental action, conventionally associated to the institutional action. In
the human world such instrumental actions vary from certain bodily movements
(raising one’s arm to vote), to the use of specific physical tools (waving a white
flag to surrender), to the use of language (saying ”the auction is open” to open
an auction). In a system of artificial agents, it is natural to assume that all
institutional actions are performed by means of a single type of instrumental
actions, namely exchanging a message.

For the purposes of the current treatment, a message consists of: a message
type, a sender, one or more receivers, and a content. The action of exchanging a
message will be represented with the following notation:

exchMsg(message type, sender, receiver(s), content)

Note that here sender and receiver are just fields of a message. That such
fields correctly represent the agent that actually sends the message and the
agents to which the message is delivered has to be guaranteed by the underlying
message transport system.

2.3 The

”

Counts as” Relation

Following Searle [25], the construction of social reality in the human world is
possible thanks to constitutive rules of the form X counts as Y in C ; in the
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particular case where X and Y are actions, the performance of an action of
type X in context C can count as performing an action of type Y . Similarly, in
an artificial system, thanks to shared conventions, the action of exchanging a
particular message can ”count as” the execution of some institutional action, if
certain contextual conditions are satisfied.

According to Searle’s Speech Act Theory [24], declarations are the particu-
lar category of communicative acts whose point is to bring about a change in
the institutional reality in virtue of their successful performance. By definition
the content of a declaration describes precisely the institutional changes that it
brings about. Therefore, we take messages of type declare as the fundamental
means to perform institutional actions. The convention that binds the exchange
of a declare message to the performance of the institutional action (iaction),
described in its content, can be described as follows:

exchMsg(declare, sender, receiver, iaction(parameters))=conv

iaction(parameters)

By itself, however, a convention is not sufficient to guarantee the successful
performance of an institutional action by the exchange of a declare message:
indeed, some additional conditions about the agent that sends the message and
about the state of system must be satisfied. In general, an agent must be au-
thorized to perform an institutional action; for example, only the auctioneer can
open an auction by sending a suitable message to the participants. Further con-
textual conditions about the state of the system, expressed by suitable Boolean
expressions, may be required; for example, it may be established that an auction
is validly opened only if there are at least two participants.

Assuming that every agent in the interaction system has an identifier
(agent id), authorizations will be represented with the following notation:

Auth(agent id, iaction(parameters), contextual conditions)

Our notion of authorization should not be confused with the notion of permis-
sion. The distinction we make between these two concepts is similar to the one
between institutionalized power and permission proposed by Jones and Sergot in
[16]. While authorizations are necessary conditions for the performance of insti-
tutional actions, permissions (like obligations) are brought about by norms (see
Section 4.2), that is, by rules that affect the normative positions of the agents
in the system. The crucial difference between authorizations and permissions is
highlighted in the cases when they are not granted. If an agent is not authorized
to perform an institutional action, a performance of the corresponding instru-
mental action does not count as a performance of the institutional action (the
institutional action is thus not executed). On the contrary, if an authorized agent
performs an institutional action without permission, the institutional action is
successfully performed, but the agent violates a norm and it may be sanctioned
for its behavior.

In the specification of an interaction system it is useful to express authoriza-
tions in term of the roles filled by agents, in order to abstract from the concrete
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agents that will be actually involved in an interaction. For example, the autho-
rization to open and close an auction is granted to the agent that fills the role
of the auctioneer, independently of its individual identity.

The concept of a role is very broad: for example, it is possible to regard
social commitments as institutional entities that define two roles: the debtor of
the commitment and its creditor. This fact appears to be general; that is, roles
are defined relative to an institutional entity. We can then abstractly define the
authorization to perform a specific institutional action (with given parameters)
associating it to a role defined in the context of a specific institutional entity
(ientity):

Auth(ientity.role, iaction(parameters), contextual conditions)

In a concrete interaction, the authorizations associated to roles need to be
transformed into authorizations of an actual agent in the system. Such transfor-
mation can be obtained searching among all the institutional entities present in
the system the ones that match the description given through the parameters
of the institutional action, and then creating a concrete authorization for each
agent having the role indicated in the abstract authorization.

3 A Commitment-Based Agent Communication
Language

The semantics of ACLs that we have proposed in [12, 13] is based on the as-
sumption that the performance of a communicative act in a multiagent system
has the effect of changing the social relationship between the sender and the
receiver, and that this change can be represented by means of an institutional
entity, that is, social commitment. To specify the meaning of various types of
communicative acts in terms of effects on commitments, it is necessary to define
an ontology of commitment and the institutional actions necessary to operate
on commitments.

3.1 The Ontology of Commitment

We regard a commitment as an entity with the following attributes: a debtor ; a
creditor ; a content ; a state, used to keep track of the temporal evolution of the
commitment. Commitments will be represented with the following notation:

Comm(state, debtor, creditor, content)

The content of a commitment can be represented by means of a temporal
proposition (for a detailed treatment of temporal propositions see [13, 6]), that
is, a proposition about a state of affairs or about the performance of an ac-
tion, referred to a specific interval of time. At every time instant, a temporal
proposition has a truth value, that can be undefined, true, or false.

The state of a commitment undergoes a life cycle, described by the state
diagram of Figure 1, and can change as an effect of the execution of institutional
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actions (solid lines) or of environmental events (dotted lines). Relevant events
are due to the change of the truth-value of the commitment’s content.

content.truth_value=1 

makeCommitment 

setPending

violated

fulfilled 

setCancel 

setCancel 

content.truth_value=0 

content.truth_value=1 

unset pending 

cancelled 

Fig. 1. The life-cycle of commitments

The creditor of a commitment can be a single agent or a group of agents. It
is important to remark that a commitment taken with a group of agents need
not be equivalent to a conjunction of commitments taken with every member of
the group. This point has been thoroughly analyzed in the literature [4, 8] but
is behind the scope of this paper.

Institutional Actions on Commitment. The institutional actions that op-
erate on commitments are defined below; preconditions and effects are described
using Object Constraint Language (OCL) [23].

– name :makeCommitment(debtor, creditor, content)
pre : not Comm.allInstances→ exists(c|c.debtor = debtor

and c.creditor = creditor and c.content = content)
post : Comm.allInstances→ exists(c|c.state = unset and

c.debtor = debtor and c.creditor = creditor and c.content = content)
– name : setCancel(debtor, creditor, content)

pre : Comm.allInstances→ exists(c|(c.state = unset or c.state = pending)
and c.debtor = debtor and c.creditor = creditor and c.content = content)

post : Comm.allInstances→ exists(c|c.state = cancel and
c.debtor = debtor and c.creditor = creditor and c.content = content)

– name : setPending(debtor, creditor, content)
pre : Comm.allInstances→ exists(c|c.state = unset and

c.debtor = debtor and c.creditor = creditor and c.content = content)
post : Comm.allInstances→ exists(c|c.state = pending and

c.debtor = debtor and c.creditor = creditor and c.content = content)

It is often useful to define institutional macro-actions, that is, actions whose
execution coincides with the sequential execution of a list of existing institutional
actions, conceived of as a single transaction. For example:

name: makePendingComm(debtor, creditor, content) =def

makeCommitment(debtor, creditor, content), setPending(debtor, creditor, content)
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3.2 Communicative Acts Libraries

As we already discussed in Section 2, the exchange of a message of type declare
can be considered as the universal act for the performance of institutional ac-
tions; in particular, every type of communicative act can be performed by means
of a declaration. This means that, at least in principle, an ACL can be defined
on the basis of a single type of messages1.

To make a more natural set of communicative acts available to human devel-
opers, we now define a library of messages that gets closer to FIPA ACL [15].
The content of all messages defined below is a temporal proposition, that is, a
description of a state of affairs or the description of a physical action referred to
a certain interval of time. The symbol =def means that performing the action on
the left-hand side is the same as performing the action on the right-hand side.

– exchMsg(inform, sender, receiver, content) =def exchMsg(declare, sender,
receiver,makePendingComm(sender, receiver, content))

– exchMsg(request, sender, receiver, content) =def exchMsg(declare, sender,
receiver,makeCommitment(sender, receiver, content))

– exchMsg(accept, sender, receiver, content) =def

exchMsg(declare, sender, receiver, setPending(sender, receiver, content))
– exchMsg(reject, sender, receiver, content) =def

exchMsg(declare, sender, receiver, setCancel(sender, receiver, content))

4 Artificial Institutions

The word institution is used in the literature with different meanings. An institu-
tion can be seen as an established organization (especially of a public character)
with a code of law, like for example a hospital or a university. With a different
meaning, the word is used to refer to a set of concepts that exist only thanks to
the common agreement of a community of agents, like for example in the case
of money, ownership, or marriage.

In multiagent systems research the term artificial institution is commonly
used to refer to a specific organization or to an abstract pattern that regulates
the interaction among agents [9] [29]. On the contrary, we use the term “artificial
institution” to refer to the abstract description of shared concepts and rules that
regulate a fragment of social reality. In this perspective a concrete organization
is a reification of one or more artificial institutions. In our view, the specification
of an institution consists of the following components:

– the core ontology, that is, the definitions of the institutional concepts intro-
duced by the institution and of the institutional actions that operates on
them;

1 Carrying out a communicative act by declaration corresponds to a performative
execution of the communicative act [26]. In human languages, however, only the
communicative acts that are completely overt may have a performative execution;
certain communicative acts, like for example the act of insinuating, cannot be per-
formed by declaration, because they intrinsically contain a concealed component.
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– a set of authorizations specifying which agents are empowered to perform
the institutional actions;

– a set of norms that impose obligations and permissions on the agents that
interact within the institution.

Of course, in order that the proposed model can actually be used in real
applications it is necessary that the fundamental concepts, used to define the
structure of institutions, are collectively accepted by the designers and users of
open interaction frameworks.

4.1 The Basic Institution

The Basic Institution is the institution that defines and regulates the manage-
ment of commitments, which we regard as the fundamental concept of every
interaction. In the previous section commitment has been introduced as an in-
stitutional entity, together with a set of institutional actions to operate on it. We
showed that commitments can be used to define basic types of communicative
acts that can be performed by exchanging declare messages.

As discussed in Section 2, the ”count as” relation between the action of ex-
changing a message and the associated institutional action takes place if some
conditions are satisfied; more precisely, the sender of the message must be autho-
rized to perform the institutional action and some contextual conditions must
hold. We have also shown how authorizations can be associated to roles.

We now define a set of authorizations concerning the creation and the ma-
nipulation of commitments. Such authorizations will be associated to the two
roles introduced by commitments themselves: the role of debtor and the role
of creditor. Moreover, we assume a universal role, RegAgt, that every registered
agent plays throughout its lifetime.

– Any registered agent can create an unset commitment with any other regis-
tered agent as debtor or creditor:

Auth(RegAgt, makeCommitment(debtor, creditor, content));

– the debtor of an unset commitment can set it to pending :

Auth(Comm(debtor, creditor, content).debtor, setPending(debtor, creditor,
content));

– the debtor of an unset commitment can set it to cancelled :

Auth(Comm(unset, debtor, creditor, content).debtor, setCancel(debtor,
creditor, content));

– the creditor of a commitment can set it to cancelled :

Auth(Comm(debtor, creditor, content).creditor, setCancel(debtor, creditor,
content)).
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Note that these authorizations allow an agent to perform all communicative acts
defined in Section 3.2. These basic authorizations may be modified or new ones
may be introduced within special institutions (see Section 5).

In general, institutions also define sets of norms to regulate the behavior of
agents. In our current view, the Basic Institution specifies no norms. However,
norms are introduced by most special institutions, and in particular by the spe-
cial institution of English Auctions described in Section 5. Therefore, in the next
subsection we give a detailed description of our concept of norm.

4.2 Norms

In a special institution, the execution of an action by an authorized agent often
needs to be regulated by another fundamental component of artificial institu-
tions, that is, a system of norms. For example, the auctioneer of an English
Auction not only is authorized to declare who is the winner, but he is also
obliged to do so in certain circumstances. Furthermore, there are conditions un-
der which it is forbidden to the auctioneer to declare an agent as the winner (for
instance during a period of time reserved for offers).

Norms prescribe which institutional actions should or should not be executed
among those that are authorized. In doing so, norms play an important function,
in that they make an agent’s behavior at least partially predictable and allow
agents to coordinate and plan their actions according to the expected behavior
of the others, as studied in [21, 2]. In particular, we think that norms can be used
to specify protocols, because they can dictate that in certain circumstances an
agent ought to send a given type of message, or react to a message in a specific
way, to comply with the regulations of a specific institution. How this can be
done will be shown in Section 5.

We regard norms as event-driven rules that fire under appropriate conditions
and, by doing so, create, update or cancel commitments affecting a predefined
set of agents. At an abstract level, a norm is part of the definition of an artificial
institution; its instances then regulate and are bounded to the organization that
reifies the institution. Agents are liable to all the norms associated to the roles
they play in an institution.

A norm is defined within an institution, observes an entity of an institution,
is activated by an event concerning such an entity, and then fires if certain
contextual conditions are met. Typically, interesting event types are the filling
of a role by an agent, a value change of an institutional attribute, the reaching
of certain instant of time, and so on.

When a norm fires, it is applied to a collection of liable agents, that are
described by a suitable selection expression; in general, the collection of liable
agents corresponds to the set of agents that play a given role in the institution.
For every liable agent, the norm creates, updates or cancels a set of commitments.

The general structure of a norm can be described as follows:

within context name: ientity
on e: event type
if contextual conditions then
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foreach agent in selection expression
do {commitmentActionDescription}+

Many studies have been devoted to the analysis of the relationship holding
between norms and commitments, which is often perceived as a fundamental
aspect of institutions [9] and organizations [4]. For example in [10] commitments
are viewed as a specialization of norms, while in [4] and [27] norms are a special
kind of commitments, called metacommitments.

From our point of view, norms are not themselves commitments, but rules
that manipulate commitments of the agents engaged in an interaction. In fact,
norms are associated to roles rather than to individual agents; they do not have
a debtor or a creditor, and strictly speaking they cannot be fulfilled or violated.
Indeed, what can be fulfilled or violated is not a norm, but a commitment created
by the application of a norm.

There are, in conclusion, two types of commitments: the ones created by
individual agents through the execution of communicative acts, and the ones
created by norms and acquired by an agent in virtue of its role in an institution.

5 English Auction

In this section we will briefly describe an example2 of a special institution, con-
cerning the specification of a widely studied interaction framework: the English
Auction. The formalization proposed exploits the conventional nature of this
type of interaction, making explicit the social concepts and rules that constitute
and regulate the interaction.

In the literature there are other attempts to specify the English Auction,
like for instance the one proposed by FIPA [14] and the one presented in a
previous work of ours [13]. But we think that the definition of the English Auction
as a special institution overcomes some drawbacks of those formalizations. In
particular in the approach presented in [14] the commitments between the winner
and the auctioneer are created only when the auction is closed. On the contrary
in the current formalization and in [13] commitments are undertaken by the
agents during the auction.

Another important advantage of this approach with respect to [13] is that
the explicit formalization of the context of the interaction simplifies the content
of the exchanged messages. For instance if the context is not made explicit, the
auctioneer of an English Auction has to accept a bid of a participant, committing
the auction house to give the product to that participant, on condition that no
higher bids will be submitted. Otherwise the context can be made explicit for
example by introducing the role current winner and a norm that creates a com-
mitment for the current winner to pay the ask price to the auction house, and a
commitment for the auction house to give the product to the current winner of

2 A complete example appears in the forthcoming Technical Report USI-Com-ITC-01,
May 2004.
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the last round. Using this formalization, the content of the exchanged messages
for bidding and for declaring the winner are simple institutional actions, as will
be shown in the next section.

5.1 The English Auction Ontology (EAOntology)

Entities. The ontology of the English Auction consists of some institutional
entities and is described by the class diagram reported in Figure 2. The funda-
mental entity called EnglishAuction is identified by its id and can assume three
different states: unset, during the registration phase, open and closed. An En-
glishAuction has a product that will be sold at the ask price, which starts from
the reservation price and increases until there are no more bids or the maximum
number of rounds (max round) is reached.

An agent that takes part in an English Auction can fill the role of participant
or of auctioneer. In each Round, participants can only raise their Bids and the
highest bidder is declared the current winner. During one auction we assume
that an agent cannot be both a participant and an auctioneer, while it must be
a participant in order to be allowed to become a current winner. Furthermore,
all the agents that are related to the auction are gathered in the EAGroup.

Other concepts that are fundamental for every MAS, like Agent and Individ-
ualAgent, are assumed to be defined in external ontologies.

UnsetEnglishAuctionOpenEnglishAuction ClosedEnglishAuction

OpenRound ClosedRound

Agent

Currency
value

Bid
id : int

11 11 price

Object Round
id : int = 0
current_offer : int = 0
startTime : Time 1 0..*1 0..*

bid

EAGroup

Currency
value

IndividualAgent

0..*0..*

offers

0..*

0..*

0..*

0..*

EnglishAuction
startTime : Time
max_round : int
current_round : int = 0
id : String
round_duration : int
transactionTime : int

0..1

1

0..1

1
product

1

0..*

1

0..*
round

11 11 organization

1

0..1

1

0..1

ask_price

11 11
reservation_price

0..*
0..*

participant

10..* 10..* auctioneer

0..1

0..*

0..1

0..*
current_winner

{disjoint, complete}

{disjoint, complete}

{subset}

{xor}

Fig. 2. Class diagram representing the English Auction ontology
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Institutional Actions. The institutional actions that operate on EnglishAuc-
tion entities allow agents to open and close the auction, to set the current winner
or a new ask price, to open and close a round and to make a bid.

To describe an institutional action a slight extension of OCL is needed. In
fact, using the terminology introduced in [7], object oriented specifications usu-
ally treat actions as events, because they only model state changes in the world.
Instead, an action is an event brought about by an agent, and may have different
effects depending on which authorized agent has performed it. For example, the
act of bidding creates a new offer for the bidder and not for other agents. There-
fore, we introduce a new reserved word, actor, that is used to refer to the agent
that is performing the action. Below we formally define some of the institutional
actions made available by the EAOntology. The action for opening an auction
is:

name : openAuction(auct id)
pre : UnsetEnglishAuction.allInstances→ exists(id = auct id)
post : OpenEnglishAuction.allInstances→ exists(id = auct id)

The action for setting the ask price, that can only rise, is:

name : setAskPrice(auct id, price)
pre : OpenEnglishAuction.allInstances→ exists(id = auct id

and ask price.value < price)
post : OpenEnglishAuction.allInstances→ exists(id = auct id

and ask price.value = price)

The action for making a bid:

name : makeBid(auct id, price)
pre : let a: OpenEnglishAuction = OpenEnglishAuction.allInstances→

select(id = auct id)
a.round→ select(r | r.oclIsTypeOf(OpenRound)).bid→
select(actor = offers) → isEmpty() and a.ask price.value < price)

post : let round: Round = EnglishAuction.allInstances→
select(id = auct id).round→ select(a.current round)

round.current offer = round.current offer@pre + 1 and round.bid→
select(b | not round.bid@pre → including(b) and b.offers = actor
and b.price.value = price and b.id = round.currentOffer)→sizeOf()=1

This action is successful only if the offered price is higher than the ask price
and if the bidder has not yet offered in the current round. Its effect is to increment
the number of offers and to create a new Bid.

5.2 Authorizations

Participant are authorized only to make bids:

Auth(EnglishAuctionid.participant, makeBid(id, price))
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Auctioneers are authorized to perform all other actions defined by the EAOn-
tology. For example:

Auth(EnglishAuctionid.auctioneer, openAuction(id))
Auth(EnglishAuctionid.auctioneer, setAskPrice(id, price))

5.3 Norms

Due to space limitations we will describe the main phases that characterize an
auction, reporting only an example of the required norms.

During the registration phase, when an agent fills a role, a suitable norm
forbids it to execute any action on EnglishAuction entities. This to prevent
agents from executing ontologically impossible institutional actions, thus causing
system overload due to the exchange of useless messages.

In every phase of the interaction, the auctioneer is obliged to do a specific
action among those it is authorized to perform, and it is forbidden from doing any
of the others. Therefore, the norms concerning the auctioneer have a recurrent
pattern.

When the auction is declared open, the auctioneer should set the reservation
price and open a new round, during which the participants can bid. Unlike
the auctioneer, a participant has the permission to make a bid but it is not
obliged. Therefore, when a round is opened, its commitment not to bid has to
be cancelled, but no obligation to do so is created.

After the round duration has elapsed, participants are prohibited from mak-
ing more bids, while the auctioneer is committed to close the round, and, if there
is a valid offer, to proclaim the current winner and the new ask price, otherwise
it must close the auction. For example the following norm defines the obligation
of the auctioneer relative to the operation of setting the ask price when a round
is closed.

within r: Round
on e: changeState(r)
if r.oclIsTypeOf(CloseRound) and r.bid→ notEmpty() then

foreach agent in r.englishAuction.auctioneer
do

foreach comm in Comm.AllInstances→ select(debtor = agent and
creditor = r.englishAuction.organization and
content.match(not setAskPrice(r.englishAuction.id,−)))

do
setCancel(comm.debtor, comm.creditor, comm.content)

makePendingComm(agent, r.englishAuction.organization,
(setAskPrice(r.englishAuction.id, r.bid→ select(b1, b2 | b1 <> b2 implies
b1.price.value ≥ b2.price.value).price.value→ asSet()), [now, now + δ],∃))

makePendingComm(agent, r.englishAuction.organization,
(not closeRound (r.englishAuction.id),
[now, time of(closeAuction(r.englishAuction))],∀))
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Where δ is the time allowed to the agent to fulfill its obligation. When an
agent fills the role of current winner, a norm obliges it to buy the product on
sale at the price of its last bid and forces the auctioneer to sell it. Finally, if
max round is not reached the auctioneer has to open a new round, otherwise it
should close the auction.

6 Discussion

In this section we compare our approach with other proposals presented in this
volume.

In [11] Flores et al. propose an ACL semantics based on four levels: composi-
tional, conversational, commitment state, and joint activity. The first level, used
to express the meaning of messages in term of commitments, characterized by
a life cycle based on states and transitions, is very close to our proposal. How-
ever, Flores et al. do not face the problem of describing the content of messages
and commitments. A further difference of their approach is that in order for a
commitment to become active either the debtor or the creditor have to accept
it; this is an interesting change in the life cycle of commitment that we intend
to investigate in our future works. The introduction of the other levels for spec-
ifying the semantics of messages is very interesting, even if we think that these
levels do not change the semantics of messages but introduce new conditions for
the correctness of messages; such conditions look like to soundness conditions of
interaction protocols treated in [13].

A semantics based on objective and external concepts is also given in [22],
where the meaning of communicative acts is described in terms of the expected
future actions of the interacting agents. We think that such an approach could be
applied to collaborative systems, where the assumptions about communication
regularities and the existence of recurrent pattern are usually verified. Instead, we
think that such empirical semantics is difficult to apply to open and competitive
systems. In fact, in such systems communication regularities are not guaranteed,
because the set of the interacting agents can change, and very few assumptions
can be made about how agents behave.

In [31] Viroli and Ricci propose a model of agent communication that does not
rely on the exchange of ACL messages, but it is based on coordination artifacts.
In their view, coordination artifacts mediate agent communication by offering to
agents a set of operating instructions for sending and receiving information. One
of the most remarkable differences between communication performed through
artifacts and messages is that agent communication is not synchronized and,
in general, agents do not know who their addresses are. We agree with Viroli
and Ricci that their approach is not a competitor of ACLs, because they involve
different scenarios.

In [18] Mallya and Singh propose an algebra for combining protocols to obtain
more flexible conversations. In their approach, commitments are viewed as means
for engineering protocols. As we showed in Section 4.2, norms can describe pro-
tocols; thus it would be interesting to study in depth how different institutions
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can be combined, how a designer can guarantee normative coherence, or how a
conversation can reach the same communicative state by following alternative
paths.

In [20] McBurney and Parson claim that the communicative act library of
FIPA-ACL lacks in the coverage of agent argumentation. For this reason, they
introduce a set of performatives that can be integrated in FIPA-ACL and define
both a declarative and operational semantics for each act. Although we agree
with McBurney and Parson that agents often have to deal with uncertainty, this
does not mean that the most general semantics of assertions is to commit an
agent to provide evidence when challenged. In fact, following Searle’s Speech Act
Theory, we think that the semantics of assertive acts is to commit the speaker
to the truth of the propositional content. The semantics defined in [20] is a
particular case, relevant when agents are involved in an argumentation process,
because their behaviour is regulated by a specific set of norms that are charac-
teristic of argumentation. For example, a norm can state that when an agent
makes an assertion, if it is challenged it should either provide reasons to justify
its point of view, or retract the assertion. Thus, we perceive the performatives
described in [20] as a set of illocutionary acts that can be performed within a
special institution devoted to argumentation.

In [17] Kagal and Finin present a preliminary model of conversation specifica-
tion and policies using permissions and obligations. The approach to model and
constrain agent interactions using normative concepts is similar to the one pre-
sented in this paper, where we describe the English Auction Protocol by means
of norms that restrict the set of communicative actions available for an agent at
each step of the interaction. We did not distinguish between conversation speci-
fication and policies, because our norms are suitable to express both cases. Our
approach is more detailed in modelling institutional reality, which is regulated by
a set of norms; we also propose to distinguish between authorization (or power)
and permission. Kagal and Finin’s declarative approach to the formalization of
norms is fit for developing a reasoning engine for artificial agents, our operational
approach is particularly suitable to check if an agent is behaving in accordance
with the system of norms. Finally, a very interesting topic of research faced by
Kagal and Finin, that we intend to investigate in future works, is the problem
of resolving conflicts between norms using for example meta-policies.

7 Conclusions

In this paper we have defined an ACL as a set of conventions to act on a fragment
of institutional reality, defined in the context of an artificial institution, called the
Basic Institution. Within such an approach, we proposed a commitment-based
semantics for an ACL, and showed that all commonly used types of communica-
tive acts can be defined in terms of a single basic type, namely declarations.
Then we have defined special institutions, that augment the Basic Institution
by adding ontological and normative elements, and showed how a well known
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interaction framework, the English Auction, can be regarded as a special insti-
tution, its interaction protocol being defined as a set of norms.

We believe that our approach helps clarifying the strict relationships holding
between language, institutional reality, and interaction rules in a MAS. More-
over, we believe that the adoption of an operational modelling style makes our
proposal reasonably easy to implement. In fact, we plan to implement our frame-
work as an extension of JADE in the near future.
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Université Laval, Département d’Informatique et de Génie Logiciel,
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Abstract. Message semantics are traditionally defined in terms of men-
tal states, which is a trend that is criticized for assuming the sincerity
and cooperativeness of agents. To circumvent these limitations, several
proposals have been put forth to define the semantics of messages using
social commitments. We follow this trend and present a conversational
model where the meaning of messages is based on their use as coordi-
nating devices advancing conversations that advance the state of social
commitments and the state of the activities in which agents participate.

1 Introduction

Agent communication languages (ACLs) mandate the common elements upon
which coherent conversations (4) can take place. The most influential ACLs in
the agent community are KQML (5) and its de facto successor FIPA-ACL (8),
which define the semantics of messages using mental states, and the sequenc-
ing of messages through conversation protocols. The main reasons to challenge
the viability of these approaches in open environments lie on the practical im-
possibility of agents to verify that uttered messages comply with their semantic
definitions without assuming the goodwill of interlocutors to abide by them (sin-
cerity condition) (20), and the disassociation between message definitions and
their use in conversations (17). As an alternative to circumvent these limitations,
a second trend has emerged that makes use of the notion of social commitments
to define coherent conversations. Notably within this trend is the work advanced
in (7; 9; 11; 24), which support various aspects of conversational coherence.

We borrow from these experiences and propose an approach to define the con-
versational semantics of messages, i.e., the meaning that messages could have
according to their use in conversations. To this end, we drew inspiration from
the study of language use (3), which highlights two complementary types of
meaning: speaker’s meaning, which is based on the use of messages for the com-
munication of intent, and signal meaning, which is based on the use of messages
as coordinating devices advancing the state of joint activities.

We advocate this latter type of meaning and conceptualize messages as co-
ordinating devices that advance conversations that advance the state of social
commitments that advance joint activities, where the states of conversations,
commitments and activities are part of the common ground of interacting agents.

R.M. van Eijk et al. (Eds.): AC 2004, LNAI 3396, pp. 18–32, 2005.
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Following this view, we propose a model where the meaning of messages is
incrementally defined based on the following levels: a compositional level, where
the meaning of messages is given by the relationship of instances in a message
(e.g., agents and the roles they play in a commitment); a conversational level,
where the meaning of messages is given based on their occurrence as part of
a conversation in which agents concur to advance the state of commitments; a
commitment state level, where the meaning of messages is given according to the
state of the commitments these messages manipulate; and a joint activity level,
where the meaning of messages is given according to their use in joint activities.

In Section 2, we describe social commitments and their life cycle, i.e., the
states in which a commitment could be, as well as the transitions between these
states. In particular, we focus on transitions that are accomplished through the
exchange of messages. This is followed (in Section 3) by our view of agents
as image holders, where an image is an agent representation that stores both
the messages that the agent represented has exchanged with the agent holding
the image, and the commitments these agents have established through these
communications. It is in this context that we derive our definitions of shared ut-
terance and shared commitment. Based on these notions, we present (in Section
4) our four-level model upon which messages could be incrementally defined, and
illustrate its application by defining a call for proposals message in a Contract
Net Protocol (22) activity. We then conclude with brief remarks on related work.

Throughout this paper, we use the Object-Z specification language (21) to
formalize definitions. We chose this language mainly due to the straightforward-
ness it affords to translate definitions into object-oriented implementations.

2 Social Commitments

The notion of social commitments (2; 19; 23) has been advanced as a way to raise
expectations about other agents’ performances. Specifically, a social commitment
can be defined as an engagement in which an agent (the debtor) is responsible
relative to another agent (the creditor) for the performance of an action.1.

We share with others (e.g., (1; 12; 10)) the view that social commitments
have a life cycle made of states and transitions between states. As shown in Fig-
ure 1, a commitment could be either accepted or rejected according to whether
or not agents are engaged in it. If accepted, a commitment is either active, vi-
olated or fulfilled ; if rejected, it is either inactive or cancelled. Commitments
can move between states through four transition types: adoption, where an in-
active commitment becomes accepted; violation and fulfilment, where an active
commitment becomes violated or fulfilled, respectively; and, discharge, where an
accepted commitment becomes cancelled. Initially, all commitments are inactive,
but can become accepted upon adoption. Adopted commitments are classified
as either active, violated or fulfilled based on the state of achievement of their
conditions of satisfaction (i.e., whether these conditions could be met, cannot be

1 We do not explicitly consider propositional content in this paper.
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Active

Violated

Fulfilled

Inactive

Cancelled

Accepted Rejected

Transitions:
1. Adoption
2. Violation
3. Fulfilment
4. Discharge

Fig. 1. Social Commitment states

met, or have been met, respectively), and can become cancelled upon discharge.
It is worth noticing that violation and fulfillment depend on the conditions of
satisfaction and that adoption and discharge are accomplished through (conver-
sational) agreement. We model only conversational transitions and assume that
transitions based on the conditions of satisfaction are carried out automatically.

2.1 Social Commitment Messages

We see messages as communicative actions where a speaker sends to an addressee
a (non-empty) set of conversational tokens. We identify four tokens for the nego-
tiation of commitments: propose, which indicates a social commitment operation
(either to adopt or to discharge a commitment), and a time interval by which a
reply to this proposal is expected; accept and reject, which are replies indicat-
ing either an acceptance or rejection to modify a social commitment state; and
counter, which simultaneously rejects a modification and proposes a different
one to be considered instead. We further specify utterances as events marking
the occurrence of communicative actions at a certain moment in time.

2.2 Achieving Conversational Transitions

It is one thing to define communicative acts and quite another to describe how
they are used and what they can accomplish in conversations. To that end,
we use an interaction protocol called protocol for proposals (pfp) (6) as the
fundamental vehicle to adopt and discharge commitments. As shown in Figure
2, the protocol starts with a proposal (i.e., a communicative act containing a
propose token) from agent a to agent b. This message can be followed (before
the expiration of a reply deadline) by the interaction patterns α or β. Interaction
pattern α indicates that either agent b sends an accepting message to agent a,
or that the interaction continues with pattern β (but with agents a and b’s
participatory roles inverted, that is, the role of the agent that in pattern α was
agent a will be agent b in pattern β, and likewise for agent b). Interaction pattern
β indicates that agent a sends a rejection or counterproposal message to agent b,
in which case the interaction follows (before the expiration of a reply deadline)
by either pattern α or pattern β. All replies except a counterproposal terminate
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propose

Pattern (a,b)

Pattern (a,b)

deadline

Protocol for Proposals

Agent
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Pattern Agent
accept
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deadline

Agent
deadline

counter, reject

reject

counter

Fig. 2. The protocol for proposals

the protocol; and when an acceptance is issued, both a and b simultaneously
apply the proposed and accepted social commitment operation to their record
of social commitments.

3 Images and Agents

We conceptualize agents as image holders, and images as agent representations
listing utterances and commitments. To restrict complex constructs (e.g., agents
holding images that hold images, ad infinitum, of other agents), we limit these
definitions through the following two properties: first, agents only capture ut-
terances in which they are involved as either the speaker or the addressee (thus
circumventing intricate ascriptions, such as agents being thought to have wit-
nessed other agents’ communications); and, second, communications are reliable
(i.e., issuing an utterance implies that the speaker and the addressee are aware
that it occurred). These properties help us capture the shared state of witnessed
utterances, in the same spirit as that of shared-basis common ground (3).

Images are specified as repositories of utterances and social commitments,
where each social commitment is associated with a unique state. As such, we
define (as shown below) a mapping between a social commitment and a state.

SocialCommitmentState == ↓SocialCommitment × ↓State

This definition does not preclude (as a function would do) that agents es-
tablish duplicated commitments, i.e., commitments that have the same debtor,
creditor and action but different states. This feature requires common constructs
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and policies to unambiguously manipulate commitments and keep their shared
state consistent as they undergo transitions. Rather than providing a unique
identifier field as part of the structure of commitments, we kept the minimal
debtor-creditor-action structure and specified that all identical commitments
could only undergo conversational transitions through independent utterances,
which guarantees that each duplicated commitment maps to a unique state.

As shown below, an image is specified as an UtteranceHolder and a Social-
CommitmentHolder, where the former holds a set of utterances occurring at dif-
ferent times. On the other hand, a SocialCommitmentHolder (not shown) holds
a set of social commitment states in which identical adopted (or discharged)
commitments were proposed and accepted using different utterances.

Image
UtteranceHolder
SocialCommitmentHolder

UtteranceHolder

witnessed : P Utterance

∀ u1, u2 : witnessed | u1 �= u2 • u1.time �= u2.time

As shown below, we define agents as entities that hold images. To this end, we
first define the class ImageHolder, which specifies a function mapping agents and
images, and where 1) an image only holds utterances whose speaker or addressee
is the agent this image represents, 2) an image only holds commitments where its
agent is the creditor or debtor, and 3) an image has records of all the utterances
that have changed the state of all the adopted and discharged commitments
it holds. Lastly, we specify agents as image holders, where each held image
records utterances in which the agent is either the speaker or addressee, and
commitments where the agent is either the creditor or debtor.

Agent
ImageHolder

∀ agent : ↓Agent ; image : Image |
image = awareof (agent)

• (∀ utterance : image.witnessed
• self ∈ utterance.speechact .performers) ∧

(∀ time : Time
• ∀ sc : dom(image.commitments(time))

• self ∈ {sc.creditor , sc.debtor})
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ImageHolder

awareof : ↓Agent → Image

∀ agent : ↓Agent ; image : Image |
image = awareof (agent)

• (∀ utterance : image.witnessed
• agent ∈ utterance.speechact .performers) ∧

(∀ time : Time
• (∀ sc : dom(image.commitments(time))

• agent ∈ {sc.debtor , sc.creditor}) ∧
(∀ add : ↓Adopted |

add ∈ ran(image.commitments(time))
• add .adopt .proposal ∈ image.witnessed ∧

add .adopt .acceptance ∈ image.witnessed) ∧
(∀ del : ↓Discharged |

del ∈ ran(image.commitments(time))
• del .discharge.proposal ∈ image.witnessed ∧

del .discharge.acceptance ∈ image.witnessed))

3.1 Sharing Utterances and Commitments

An utterance is shared between its speaker and addressee if they are aware
that the utterance has been witnessed by both of them—which holds true given
our assumption of reliable communications. Thus, an utterance is shared if its
speaker and addressee hold images in which they have witnessed its occurrence.

SharedUtterance : Utterance → B

∀ u : Utterance
• SharedUtterance(u) ⇔

(∀ agent : u.speechact .performers
• ∃ speaker , addressee : Image |

speaker = agent .awareof (u.speechact .speaker) ∧
addressee = agent .awareof (u.speechact .addressee)

• u ∈ speaker .witnessed ∧
u ∈ addressee.witnessed)

Likewise, a social commitment is shared between two agents if these agents
are the creditor and debtor of the commitment and if they have images in which
this commitment has the same state. Accordingly, that a shared commitment is
in an adopted or discharged state implies that agents also share the proposing
and accepting utterances that brought the commitment to its current state.
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SharedSocialCommitments : Time × ↓Agent × ↓Agent → P SocialCommitmentState

∀ t : Time; a1, a2 : ↓Agent
• SharedSocialCommitments(t , a1, a2) =

{sc : SocialCommitmentState |
∀ agent : {a1, a2}
• ∃ i1, i2 : Image |

i1 = agent .awareof (a1) ∧
i2 = agent .awareof (a2)

• sc ∈ i1.commitments(t) ∧
sc ∈ i2.commitments(t)}

4 Message Definitions

Based on the above specifications, we incrementally built our message definitions
through four levels: at the compositional level, where messages can be classified
according to type and identity of their constituents; at the conversational level,
where the significance of messages is given based on their occurrence as part
of conversations seeking agreement to advance the state of commitments; at
the commitment state level, where meaning is given according to the state of
manipulated commitments; and at the joint activity level, where meaning is
given according to the use of messages as part of joint activities.

4.1 Compositional Level

This level sets the foundations to build our message classification. Definitions at
this level identify messages based on the type and identity of their components.
These definitions are independent of the occurrence of messages as utterances,
and allow their analysis outside the scope of conversations.

In the context of the pfp, agents agree on the conversational transition of so-
cial commitment states. In this view, a message is a well formed proposal (defined
through the ToPropose function below) if it contains a propose conversational
token whose speaker and addressee are the creditor and debtor of the proposed
commitment. Similarly, a message is a well formed reply (as defined in ToReply)
if there is a reply token (either an accept, reject or counter) whose speaker and
addressee are the creditor and debtor of the commitment, and if there is no
other reply token referring to this commitment (thus avoiding ambiguity on the
termination of a pfp instance within a single message).

ToPropose : ToSpeak → P ↓Propose

∀ s : ToSpeak
• ToPropose(s) =

{p : ↓Propose |
(p ∈ s.tokens) ∧
(s.performers = {p.proposing .commitment .creditor ,

p.proposing .commitment .debtor})}
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ToReply : ToSpeak → P ↓Reply

∀ s : ToSpeak
• ToReply(s) =

{r : ↓Reply |
(r ∈ s.tokens) ∧
(s.performers = {r .replying .commitment .creditor ,

r .replying .commitment .debtor}) ∧
(�r1 : ↓Reply |

r1 ∈ s.tokens ∧
r1 �= r

• r1.replying .commitment = r .replying .commitment)}

These definitions can be used to specify other messages with more refined
meanings. For example, acceptances and rejections could be defined as messages
containing an accept and reject token (respectively) that are well formed replies;
and counterproposals could be defined as messages containing a counter token
that is a well formed proposal and rejection. Other feasible definitions are an
offer, which could be a proposal where the speaker is the debtor of the commit-
ment, and a request, where the hearer is the debtor of the commitment.

4.2 Conversational Level

This level builds upon the compositional level, and indicates the significance of
messages once they are uttered. Definitions take into account the time when an
utterance was issued, the previous utterances that are shared between its speaker
and addressee, and its occurrence as part of a pfp instance.

To support definitions at this level, we specify SharedProposals (below) to re-
fer to all proposals shared by two agents, within a certain time interval, that con-
tain a propose token matching a given commitment operation. Likewise, Shared-
Replies (not shown) refers to all shared replies that occurred in a time interval.

SharedProposals : Interval × ↓Agent × ↓Agent × ↓Operation → P Utterance

∀ i : Interval ; a1, a2 : ↓Agent ; op : ↓Operation
• SharedProposals(i , a1, a2, op) =

{u : SharedUtterances(a1, a2) |
i .from ≤ u.time ≤ i .until ∧
(∃ p : ToPropose(u.speechact)
• p.proposing = op)}

Based on these definitions, we specify that a proposal between two agents at
a given time is a sound attempt to reach agreement (as shown in SoundProposal
below) if 1) there exists (at the given time) a shared utterance between these
agents that proposes the given commitment operation, and 2) this proposal can
be replied, which we specify simply as having the reply time in the proposal
start after the utterance of the proposal.
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SoundProposal : Time × ↓Agent × ↓Agent × ↓Propose → B

∀ time : Time; agent1, agent2 : ↓Agent ; propose : ↓Propose
• SoundProposal(time, agent1, agent2, propose) ⇔

(SharedProposals(at(time), agent1, agent2, propose.proposing) �= ∅) ∧
(time < propose.reply .from)

Likewise, the function SoundReply (below) specifies that a reply is sound if,
at the time it occurs, there is a proposal that could be answered and has not
been answered yet. This outcome is achieved by the partial functions proposed,
which maps each shared proposal that could be replied at the given time to a set
of replies that could answer it; and replied, which maps a subset of the proposals
in proposed with one of its corresponding replies, where each reply replies to only
one proposal. Thus, a reply would be sound if there are unanswered proposals,
i.e., if the proposals in replied is a proper subset of proposals in proposed.

SoundReply : Time × ↓Agent × ↓Agent × ↓Reply → B

∀ t : Time; s, a : ↓Agent ; r : ↓Reply
• SoundReply(t , s, a, r) ⇔

(∀ proposed : Utterance �→ P Utterance |
dom proposed =

{u : SharedProposals(before(t), s, a, r .replying) |
∃ p : ToPropose(u.speechact) |

p.reply .from ≤ t ≤ p.reply .until ∧
p.proposing = r .replying

• proposed(u) = SharedReplies(within(p.reply .from, t), s, a, r .replying)}
• ∀ replied : Utterance �→ Utterance |

∀ u : dom replied
• replied(u) ∈ proposed(u) ∧

(�u1 : dom replied |
u1 �= u

• replied(u) = replied(u1))
• dom replied ⊂ dom proposed)

Based on the above, we define that an utterance would be a proposal if it is
a well formed, sound proposal (as shown in Proposing below).

Proposing : Utterance → P ↓Propose

∀ u : Utterance
• Proposing(u) =

{p : ToPropose(u.speechact) |
SoundProposal(u.time, u.speechact .speaker , u.speechact .addressee, p)}

Likewise, an utterance would be a reply (as defined in Replying below) if it
is a well formed, sound reply.
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Replying : Utterance → P ↓Reply

∀ u : Utterance
• Replying(u) =

{r : ToReply(u.speechact) |
SoundReply(u.time, u.speechact .speaker , u.speechact .addressee, r)}

In the same manner as it was explained in the compositional level, definitions
at this level could also be specialized to create other more refined definitions,
such as accepting, rejecting, offering and requesting, among others.

4.3 Commitment State Level

This level builds upon the conversational level, and refines the definitions of
messages according to the shared state of the commitment being manipulated. As
such, an utterance proposing the discharge of a social commitment (as indicated
in ProposingStateDischarge below) would be one that contains a propose token
attempting to delete an accepted social commitment.

ProposingStateDischarge : Utterance → P SocialCommitmentState

∀ u : Utterance
• ProposingStateDischarge(u) =

{sc : SocialCommitmentState |
∃ p : Proposing(u); a : Accepted |

p.proposing ∈ Delete
• sc = (p.proposing .commitment �→ a) ∧

sc ∈ SharedSocialCommitments(u.time, u.speechact .speaker ,

u.speechact .addressee)}

This definition could then be refined as a withdrawal (as indicated in With-
drawal, shown below) if the involved commitment is in an active state, and if its
discharge is being proposed by the same agent that proposed its adoption. Like-
wise, this definition could be refined as a Release (not shown) if the proposing
and proposed agents are the creditor and debtor of the withdrawn commitment.

Withdrawal : Utterance → P SocialCommitmentState

∀ u : Utterance
• Withdrawal(u) =

{sc : ProposingStateDischarge(u) |
∀ a : Active |

a = state(sc)
• a.adopt .proposal .speechact .speaker = u.speechact .speaker}

4.4 Joint Activity Level

The joint activity level builds upon the commitment state level, and refers to
the meaning given to messages when they are used as part of joint activities. In
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retrospect, the meaning of messages is not only given by their constituents, their
use as devices advancing the state of commitments, and the shared state of the
commitments they refer to, but also by the type of actions these commitments
bring about, and by the roles that interacting agents play in these actions.

To exemplify this point, we refer to a contract net joint activity defined in
(7), which specifies a manager and a bidder roles that interact to bring about
three interdependent actions: one in which the bidder produces a bid, a second
one in which the manager evaluates the bid, and a third one in which (if offered
by the manager) the bidder performs the then-bid now-contract. These actions
were defined in independent activities with independent roles, and then merged
into the contract net activity, where dependencies between roles and actions were
defined, e.g., the bid resulting from the bidding action is the bid evaluated in
the evaluating action, the bidder is the producer of a bid and the executor of
the contract. In this view, a call for proposals message (below) would be one in
which a manager requests to a bidder the adoption of a commitment where the
bidder produces a bid (which indicates the requirements she could fulfill).

Message definitions at this level could be used by designers to specify the
roles that agents could be programmed to play in activities, or by deliberative
agents to dynamically direct their conversations based on the messages issued
and the commitments they entail (which is an approach explored in (15)).

CallforProposals : Utterance → P SocialCommitmentState

∀ u : Utterance |
u.speechact .speaker ∈ Manager ∧
u.speechact .addressee ∈ Bidder

• CallforProposals(u) =
{sc : RequestingAdoption(u) |
∀ act : ToOfferPerformance |

act = (commitment(sc)).action
• act .producer = u.speechact .addressee ∧

act .receiver = u.speechact .speaker}

4.5 Resolving Ambiguities in Transitions When Duplicated
Commitments Exist

A few issues must be resolved to keep the consistency of shared commitments
during transitions when duplicated commitments exist, and when commitments
can only be identified through a creditor, debtor and action descriptors. In this
section we explore these issues during conversational and satisfaction transitions.

On the one hand, conversational transitions must unambiguously identify the
commitment that is being referred to in utterances. Ambiguity could arise if 1) a
reply occurs at a time when more than one proposal with identical commitments
could be answered, since this may result in agents selecting different proposals
as the one being replied to; and 2) a subsequent reply occurs that is regarded
by one of the agents as answering the remaining proposal while the other agent
does not (e.g., if the reply time of the message that the latter agent retained as
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unanswered has expired), and this reply is an acceptance changing the state of a
social commitment, since it will result in one of these agents changing the state
of the referred commitment while the other agent does not. These cases result
(or may result, in the case of the former) in discrepancies on the shared state of
commitments: in the first case, agents hold commitments with different replied
proposals; in the second case, an agent holds an accepted commitment while the
other does not, which may eventually lead to a clash of their expectations of
each other within the joint activity in which they participate.

These problems can be prevented either by expanding the structure of com-
municated commitments with a disambiguating feature (e.g., the time when the
proposal being answered was issued, a unique commitment identifier), by engag-
ing on a subsequent dialog requesting the explicit identification of the proposal
being replied (e.g., asking for the time when the proposal occurred), or by man-
dating that agents use the same criteria to select the proposal being replied
(e.g., a reply answers the proposal whose reply time expires first). Although
we do not model these strategies, we intuitively favor that agents engage in di-
alogues, rather than augmenting the structure of communicated commitments
with proprietary information, or attempting to standardize the functionality of
agents, which would be impossible to enforce in open environments.

On the other hand, satisfaction transitions deal with the issue of identify-
ing the performances that satisfy accepted commitments. That an agent holds
identical active commitments only means that it has recorded those commit-
ments given independent conversational transitions, not necessarily that these
commitments will be satisfied as many times as recorded. Since the possibility
of optimizing performances (i.e., whether one performance satisfies all identical
commitments or if independent performances are required) may be bound by the
expectations of involved agents, they are not modelled in our analysis. Rather,
we assume that transitions based on conditions of satisfaction are automatically
traversed according to the state of these conditions.

5 Related Work

Conversations and social commitments have been the subject of previous studies.
Some efforts have aimed at the study of social commitments in argumentation
(23), in which the evolution of conversations is motivated by the commitments
that are implied (and not necessarily made explicit) in communications. Of par-
ticular interest are the proposals furthered in (14; 18). Other efforts have focused
on the mechanics of conversations based on the operations advancing the state
of social commitments, which is a view independent of the intentional motives
behind their advancement. We share this view, and aim at the identification of
public elements binding the evolution of conversations. In addition to our pro-
posal, there are other approaches pursuing this goal, such as those advanced
by Fornara and Colombetti (9) (who specify messages categorized as speech
acts whose meaning is given by operations to manipulate the state of commit-
ments), and Yolum and Singh (24) (who specify that messages have meaning
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according to operations and reasoning rules applied to commitments). We share
with these approaches the view that part of the meaning of messages is based
on the (shared) state of commitments, and with the practical aspects of pre-
commitments (indicating a sequencing of messages establishing commitments)
and conditional commitments (indicating a sequencing of commitments), which
we model through the pfp, and the constraints in agent roles and joint activities,
respectively.

Sensible differences between our approaches include the pragmatics of com-
mitment state transitions, which in the above approaches tend to be restrictive.
For example, that a commitment can be created only by its debtor (24, p. 530)
(whereas a creditor should be able to create a commitment in the context of an
offer)2, and that a commitment can be cancelled only by its creditor (9, p. 536)
(whereas a debtor could cancel a commitment if sanctions were applied) are too
stringent for practical purposes. Differently, the incremental nature of our model
distinguishes these aspects, and allows others to be considered. As an example,
we have been exploring the role of sanctions to complement our model (16).

Lastly, an additional concern noted in (13) regarding (24), is the view that
commitment operations should not be unilaterally applied but rather must be
jointly approved by interacting agents (unless mandated by the context or by
meta-commitments). Although we endorse this view, our current analysis is re-
stricted to explicit manipulations approved by consensus, as afforded by the pfp,
for any conversational transition adopting or discharging social commitments.

6 Conclusions

As noted in (3), utterances are signals with two complementary types of meaning:
speaker’s meaning, which is defined in terms of their use for the communication of
intent, and signal meaning, which is defined in terms of their use as coordinating
devices to advance joint activities. The subtle but important difference between
these types of meaning resides on what is understood by the issuing of a signal:
whereas speaker’s meaning appeals to the reasons for advancing a joint activity,
signal meaning puts forth a token that is meant to advance the joint activity.

Within the multiagents community, message semantics has traditionally em-
phasized speaker’s meaning, as reflected by FIPA-ACL and KQML’s use of
speech acts and mental states for their message definitions. This approach is su-
perb to communicate intent, since agents can readily know the intended mean-
ing of a message by just observing its definition rather than by inferring its
meaning from the context of interaction. However, these definitions are given
independently of any joint activity, and their application to open environments
is maimed by the assumption that agents are always sincere and cooperative.

Signal meaning, on the other hand, has been kept as a low profile component
of meaning and is not addressed by these standardizing efforts. We contend that
this type of meaning must be taken into account as part of message definitions.

2 See (13, p. 369) for a discussion on this issue.
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We explored this possibility in the context of messages aiming at the negotiated
manipulation of social commitment states. We chose this type of messages due
to the fitness of social commitments to coordinate the expectations of agents
and provide a point of reference to advance the state of their interactions.

Following this perspective, we proposed a four-level incremental model that
focuses on the characteristics of messages (compositional level) that agents use in
conversations (conversational level) to advance the state of social commitments
(commitment state level) that advance their joint activities (joint activity level).
Lastly, we explored the feasibility of pfp messages to describe signal meaning
given their support for building flexible and modular conversation protocols (7).
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Abstract. Protocols enable unambiguous and smooth interactions among agents,
and commitments among agents are a powerful means of developing protocols.
Commitments allow flexible execution of protocols and help agents reason about
protocols and plan their actions accordingly, while at the same time providing
a basis for compliance checking. Multiagent systems that employ commitment-
based interaction can conveniently and effectively model business interactions
because the autonomy and heterogeneity of agents mirrors real-world businesses.
Such modeling, however, requires multiagent systems to host a rich variety of
interaction protocols that can capture the needs of different applications. We show
how a commitment-based semantics for protocols provides a basis for refining
and aggregating protocols. We propose an approach for designing commitment
protocols wherein traditional software engineering notions such as refinement and
aggregation are extended to apply to protocols. We present an algebra of protocols
that can be used to compose protocols by refining and merging existing ones,
and does this at a level of abstraction high enough to be useful for real-world
applications.

1 Introduction

Multiagent systems where the agents are autonomous and heterogeneous are a convenient
and accurate model for describing and enacting many real life processes and interactions.
While autonomy and heterogeneity are what make the multiagent paradigm attractive,
heterogeneity gives rise to incompatibility and autonomy to unpredictability. Agents
need to understand each other and behave in predictable ways for their interactions to
be fruitful. To achieve consensus and smooth interaction between agents, standards are
required, as in most distributed systems. Web Services are an example of how standards
allow heterogeneous systems to interact with each other. Recent efforts for Web Service
choreography—which deals with the way services interact—and orchestration—which
deals with the way services are composed using other services—address service inter-
actions [12] similar in spirit to agent interaction protocols. Agent interaction, however,
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requires higher-level abstractions to deal with the rich variety of interactions found in
multiagent systems.

Interaction Protocols. A protocol is a description of the steps involved in an interaction.
Protocols make interactions coherent and easy to implement. The use of protocols has
successfully solved the problem of standardization in areas such as computer networks.
Likewise, the heterogenous and distributed structure of multiagent systems necessitates
clear protocols to govern any interaction. Network protocols explain the steps to be
taken in great detail, sometimes even enumerating all possible events that can occur.
For example, the Session Initiation Protocol (SIP), which is used to set up phone calls
over the Internet, describes every message that has to be sent for setting up and tearing
down calls and also every possible resultant reply for the message [14]. By contrast,
multiagent systems require protocols to be specified at a high level of abstraction, to
accommodate the complexity of agent systems, and to not overwhelm protocol designers
with unnecessary details.

While protocols are needed to force an agent to behave in a predictable manner, they
should also allow flexibility of execution. A protocol that allows only one sequence of
steps does not let its participants leverage their autonomy.A restrictive protocol, however,
is not always bad. If a protocol allows only a single computation, checking whether the
participants are compliant with the protocol is trivial. Any step that does not agree with
the protocol signals a violation.As protocols become more flexible, however, compliance
verification becomes harder, since many choices are offered to the participants at any
step of the protocol. Consequently, protocol design is an exercise in finding the right
balance between flexibility of execution and ease of compliance checking.

Motivation. The tradeoffs between execution and verification to be borne in mind while
designing a protocol make protocol design a nontrivial undertaking. It requires human
expertise and knowledge of the application domain. To reduce unnecessary effort and
to prevent reinventing the wheel, designers should be able to create new protocols by
refining or combining existing protocols whose properties are well understood. In such
a situation, a sound theory of composition of protocols and a classification of protocols
in a hierarchy backed by formal semantics would aid protocol designers and take from
them some of the burden of ascertaining the properties of the protocols being designed.
An algebra of protocols is needed as the basis for protocol composition. Such an algebra
should support operators that allow merging of protocols into a refined protocol which
preserves certain properties of the merged protocols.

Our central claim is that protocols have properties as a whole, rather than being
just a sequence of steps. We develop a protocol algebra which is at once a high-level
abstraction of protocols and a useful tool for composing protocols and reasoning about
them, as we demonstrate with an example.

Contribution. Our main contribution is in developing an algebra for composing pro-
tocols. Just as conceptual modeling in general involves abstractions such as refinement
and aggregation, so must conceptual modeling of protocols. This algebra we develop
provides the underpinnings of such abstractions for protocols. The algebra is a high-
level abstraction that relates to real-world interaction protocols, and hence is easy for
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protocol designers to understand. We also demonstrate how the use of commitments
allows reasoning about protocols that leads to richer interaction patterns from existing
ones. Further, we outline how a hierarchy of protocols can be generated based on com-
mitments. This hierarchy aids reasoning about which protocol is the most general for a
given process.

Organization. The rest of this paper is organized as follows. Section 2 introduces the
technical background, and some illustrative examples that are used throughout the paper.
Section 3 develops our theory of semantics of protocol subsumptions, introduces the pro-
tocol algebra and demonstrates its utility in composing protocols. Section 4 summarizes
the paper, identifies related work in the field, and charts out future directions.

2 Technical Framework

We represent protocols as transition systems similar in spirit to finite state machines.
These protocols generate computations or runs, which are sequences of states that a
valid protocol execution can go through. We devise a hierarchical classification based
on the runs generated by protocols. Runs are composed of states that the protocol com-
putation (execution) goes through based on the actions that the participants in the given
protocol perform. This classification forms the basis of our work. Next, we introduce
commitments, discuss some scenarios from our running example, and then define the
basic technical concepts needed for our semantics.

2.1 Commitments in Protocols

Commitments among agents are an abstraction of contracts that exist in the real world
[3, 15]. Commitments lend coherence to interactions because they help agents plan based
on the actions of others, and they are, in principle, enforceable. Commitment-based pro-
tocols are more flexible than traditional formalisms like Finite State Machines and Petri
nets [20, 22]. By specifying the states that need to be reached in terms of commitments,
they can allow multiple paths to achieve a state, and consequently create a flexible
protocol specification.

A commitment C(x, y, p) denotes that the agent x is responsible to the agent y for
bringing about the condition p. Here x is the debtor, y the creditor, and p the condition
of the commitment, expressed in a suitable formal language. Commitments can also be
conditional, denoted by CC(x, y, p, q), meaning that x is committed to y to bring about
p if q holds.

Commitment Operations. Commitments are created, satisfied, and transformed in cer-
tain ways. Conventionally, six operations are defined on commitments. These are the cre-
ate(x,C), the cancel(x,C), the release(y,C), the assign(y,z,C), the delegate(x,z,C),
and the discharge(x,C). The assign(y, z, C) operation replaces y with z as C’s creditor
and the delegate(x,z,C) operation makes z the new debtor of the commitment C. A
detailed exposition of all these operations is given in [15] and is omitted here, for brevity.

The discharge(·, ·, ·) operation satisfies a commitment. A commitment is said to be
active if it has been created, but not yet discharged.
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2.2 Running Example

As a real world example, we consider a variant of the NetBill protocol [17] used by a
customer’s agent to purchase a book from an online bookstore’s agent. We identify four
distinct, but related, scenarios that can arise during this purchase interaction. Each of
these scenarios requires a different amount of effort from the participants in terms of
protocol execution, planning, and coordination. Both agents would benefit from being
able to compare scenarios to choose the one that best serves their interests.

1. The customer asks the bookstore for a price quote on a book, and upon receiving
a quote from the bookstore, accepts the bookstore’s offer. The bookstore sends the
book, and the customer pays. Figure 1(a) shows this interaction. This interaction
sequence belongs to the purchase protocol.

2. The bookstore is willing to refund the price of returned books. This scenario is
similar to the previous scenario till the book is delivered to the customer, but is
longer, since the customer then returns the book for a refund. Figure 1(b) shows this
interaction.

3. The customer delegates the payment to a third party, e.g., a bank. Such a situation
is not very different from using a credit card to pay for goods, and is shown in
Figure 1(c).

4. The customer wants insured shipping, and the bookstore’s existing shipper does not
insure goods. The bookstore negotiates with and contracts out the actual shipping to a
shipper. Here, the shipper delivers the books to the customer, after which the shipper
is paid by the bookstore. To complicate matters, the customer pays the bookstore
via its bank like in the previous scenario. This scenario is shown in Figure 2.

In Figures 1(a), 1(b), 1(c), 2, 4(a), and 4(b), ellipses represent states, named si. Solid
arrows are labeled by the messages that are passed between the participating agents.
These messages correspond to actions that the agents take. Note that each of these
figures represent a possible scenario, i.e., a run of the protocol. Also, states of the runs
are drawn in different columns (also called swimlanes in UML parlance) to show the
interacting agents clearly even though states are maintained by all interacting agents.

Table 1 explains the meanings of the states that the first scenario runs through. Table
3 shows the meanings of the messages passed, where, c represents the customer, b, the
bookstore, g, the book that the customer is interested in buying, and k, the customer’s
bank. The delegate message relates to corresponding commitment operation.

2.3 Propositions

Propositions capture facts about what conditions hold, what commitments have been
made, and whether these commitments have been fulfilled. The propositions used in
a protocol are assumed to be understood by agents involved in the protocol. In the
purchase example, we use the propositions given in Table 2. In addition to these, active
commitments are also represented as propositions, as we shall explain when discussing
states.
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Table 1. Meaning of states in the purchase protocol

State Meaning

s1 Customer has asked the bookstore the price of the goods. No commitments
made.

s2 Bookstore has quoted a price for the said goods. The bookstore is now
willing to send the goods if the customer promises to pay for them

s3 Customer has agreed to the bookstores price. The customer is willing to
pay the price if the books are delivered.

s4 Bookstore has delivered the book.
s5 Customer has paid for the book.

reqQuote( c,b,g)

sendQuote( b,c,g,p)

sendAccept( c,b,p)
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Fig. 1. Three scenarios of the purchase example

2.4 Actions

Agents perform actions to bring about changes in the world. In our framework, ac-
tions are modeled as messages sent by an agent to other agents. Just like an action, a
message sent by an agent can affect the state of a protocol in which the agent partic-
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reqQuote(c,b,g)

sendQuote(b,c,g,p)

sendAccept(c,b,g,p)
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g = goods
p = price of goods

[gc] = shipping g to c
p

x
 = price of [gc]

Fig. 2. Purchase protocol scenario 4– shipping via a separate shipper and payment via bank

ipates. Messages may be implemented in different ways. For example, filling a form
with credit card information and submitting it over the web is a message that represents
a transfer of funds. The set of actions is denoted by A. The meanings of actions used
in our purchase example are given in Table 3. In addition to the actions shown, A also
contains actions corresponding to commitment operations. For example, A contains an
action delegate(c, k,C) corresponding to the operation delegate(c, k,C), where C is a
commitment made by c.

2.5 States

A protocol has many states that it goes through, during the course of its execution. A
state is a snapshot of the world and is labeled by the set of propositions that are true in
it. That is, a state is an assignment of truth values to propositions. For example, state s1
of the purchase example is labeled by the set {reqQuote(c, b, g)} and state s0 by {true}.
We denote the label of a state s by [s]. Table 4 shows the labels that are assigned to states
in the purchase protocol. The set of states is denoted by S. We include in this set a unique
start state sφ, which is labeled by the set {true}. In the purchase example, s0 = sφ.

2.6 Runs

A run is one possible execution sequence of a protocol. A protocol can allow many
computations, or runs. A run is a sequence of states 〈s0 . . . si . . .〉. In this paper, we
consider only non-empty runs except in a special protocol described in Section 3.3.

The operator ≺τ orders states temporally with respect to a run τ , so that si ≺τ sj

implies that si occurs before sj in the run τ .
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Table 2. Meanings of propositions used in the purchase protocol

Proposition Meaning

reqQuote(c, b, g) c has requested a quote for g from b.
quote(b, c, g, p) b quotes to c price p for g, i.e., b will deliver if c

commits to pay upon delivery. This is represented by
CC(b, c, goods(b, c, g), acceptQuote(c, b, g, p)).

acceptQuote(c, b, g, p) c has accepted the price p that b quoted for g, i.e, c com-
mits to pay if the goods are delivered. This is represented by
CC(c, b, pay(c, b, p), goods(b, c, g))

goods(b, c, g) g has been delivered to c by b.
pay(c, b, p) The amount p has been paid to b by c.

return(c, b, g) g has been returned to b by c.
refund(b, c, p) The amount p has been refunded to c by b.

Table 3. Meanings of actions (modeled as messages) in the purchase protocol

Message Meaning

reqQuote(c, b, g) c asks b what the price of g is.
sendQuote(b, c, g, p) b quotes price p to the c, for g.
sendAccept(c, b, g, p) c accepts the price p quoted by b for g. c is now committed to pay if the

book is sent to it.
sendGoods(b, c, g) b sends g to c.
sendMoney(c, b, p) c sends the money p to b.
delegate(c, k, C) c delegates the commitment C to k.

returnGoods(c, b, g) c returns g to b.
sendRefund(b, c, p) b refunds the money p to c.

authPay(c, b, p) c authorizes its bank to pay the amount p to b. Essentially c delegates
C(c, b, p) to k.

2.7 Protocols

Computationally, a protocol corresponds to a set of computations that it allows. These
can be captured as a set of runs where any of the runs that subsume the given runs may
be realized. That is, each run in a protocol defines a sequence of steps that must be
performed in the same order relative to each other. The concept of subsumption of runs
is introduced shortly. A protocol is represented as a transition system as defined by a
tuple 〈A, S, s0, Δ, F, R〉 where

• A is a set of actions,
• S is a set of states,
• s0 is the initial state, s0 ∈ S,
• Δ is a set of transitions, Δ ⊆ S× A× S,
• F is a set of final states, F ⊆ S, and
• R is a set of roles (or participants).
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Table 4. State labels in the purchase protocol

State Associated Label

s0 {true}
s1 {reqQuote(c, b, g)}
s2 {quote(b, c, g, p)}
s3 {C(b, c, goods(b, c, g)), CC(c, b, pay(c, b, p), goods(b, c, g))}
s4 {goods(b, c, g), C(c, b, pay(c, b, p))}
s5 {goods(b, c, g), pay(c, b, p)}
s21 {goods(b, c, g), C(k, b, pay(k, b, p))}
s17 {goods(b, c, g), pay(c, b, p)}
s18 {goods(b, c, g), return(c, b, g), C(b, c, refund(b, c, p))}
s19 {goods(b, c, g), return(c, b, g), refund(b, c, p)}

Δ contains transitions of the form 〈si, a, sj〉, where si, sj ∈ S and a ∈ A. Here si is the
source of the transition and sj its destination. Such a transition advances a computation
that is in state si to state sj when an action a is performed, i.e., when the message
corresponding to a is sent and received. In other words, a run can be generated from a
protocol by the successive concatenation of transitions beginning from the initial state
of the machine. The concatenation of a transition to a run appends the destination of
transition to the run if the source of the transition matches the last state of the run.
Consequently, a run 〈s0s1s2 . . . sn〉 can be generated by a machine whose initial state
is s0, and whose transition set contains the elements 〈s0, , s1〉, 〈s1, , s2〉 and so on till
〈sn−1, , sn〉, where sn ∈ F. The set of all such runs is denoted by [[P ]].

Protocols are specified by propositions and actions that cause states to change. The
semantics of actions are given in terms of commitments such as those shown in Table 3.
Given the actions and their semantics, the formalization of a protocol is straightforward.
The transition function of a protocol can be specified explicitly as state-action-state
triples or as a set of rules that are complied into such triples for runtime efficiency. Two
example transition mechanisms for commitment-based protocols are [22] and [4]. For
example, Tables 2, 3, and 4, along with a set of rules for determining the new state given
the old state and the action taken would define the purchase protocol.

3 Reasoning About Protocols

This section describes our theory of comparison of protocols and protocol refinements.
Section 3.1 defines how states are deemed similar to one another, Section 3.2 defines
subsumptions of runs, and Section 3.3 uses comparisons of commitment-operation based
propositions to relate different protocols.

3.1 Similarity of States

States form the fundamental components of runs, and are labeled by sets of proposi-
tions. Any comparison of states, therefore, must be based on comparing propositions.
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In this section, we introduce three state-similarity functions ι, σ, and αA,P , all based on
commitment propositions, and show how these help relate different runs.

A state-similarity function f is a mapping from a state to a set of states, i.e., f :
S �→ 2S.

Definition 1. A state si is similar to a state sj under the state-similarity function f if
and only if sj ∈ f(si).

State-similarity under the function f is denoted by [f ]〉. That is, si[f ]〉sj ⇐⇒ sj ∈
f(si).

Identity State-Similarity. ι is the identity state-similarity function. That is, si[ι]〉sj if and
only if si and sj are labeled by same set of propositions. ι(si) = {sj |[si] = [sj ]}.

[ι]〉 is reflexive, symmetric, and transitive.

Creditor State-Similarity. As another state-similarity function, consider σ. Under σ, a
state si is similar to a state sj if in the two states all the participants of the protocol have
the same commitments being made towards them, regardless of which agent makes it.
Since the creditor of a commitment is immaterial under σ and a delegate(·, ·, ·) action
changes the creditor of a commitment, σ can be defined as σ(si) = {sj |sj can be reached
by a finite number of delegate(·, ·, ·) actions from si}

As an example, consider states s4 and s21 from the of the example scenarios.These
states are similar under σ because, as described in Table 4, these states have propositions
representing commitments that differ only in their creditors.

[σ]〉 is reflexive, symmetric, and transitive.

Role-and-Commitment State-Similarity. A state si is similar to a state sj under αA,P ,
where A is a set of roles and P is a set of propositions, if the commitments made by any
role in A to any other role in A, and the propositions in P that hold at si, also hold at sj .

3.2 Subsumption of Runs

Our theory of comparing protocols is based on a notion of subsumption of the runs
specified by a protocol. [[f ]〉 denotes subsumption operator over runs. The operator [[f ]〉
is an order-preserving mapping from one run to another, and depends on the function f .

Definition 2. A run τj subsumes a run τi under function f if and only if, for every state
si that occurs in τi, there occurs a state sj in τj that is similar under f , and sj has the
same temporal order relative to other states in τj as si does with states in τi.

τj [[f ]〉τi ⇐⇒ ∀si ∈ τi,∃sj ∈ τj : sj ∈ f(si) and ∀s′
i ∈ τi,∃s′

j ∈ τj : s′
j ∈ f(s′

i) ⇒
(si �τi s′

i ⇒ sj �τj s′
j) That is, longer runs subsume shorter ones, provided they have

similar states occurring in the same order. Consider the identity state-similarity function
ι. Under ι, a run τj subsumes all its subruns. [[ι]〉 is reflexive and transitive.

• Reflexivity. Every run subsumes itself under ι.
• Transitivity. If τj [[ι]〉τi, and τk[[ι]〉τj , then τk[[ι]〉τi, since τk has all states of τj in

proper temporal order, and τj in turn has all states of τi in proper temporal order.
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Let τ1, τ2, and τ3 be the runs shown in Figures 1(a), 1(b), and 1(c) respectively. We
then have τ2[[ι]〉τ1. Also, τ3[[ι]〉τ1. However, τ1 subsumes neither τ2 nor τ3, because τ3
has a state s21, whose label does not match any state label in τ1, and τ2 has states s18
and s19, whose labels do not match any state label in τ1. Run τ3 does not subsume τ2
because of s21, and τ2 does not subsume τ3 because of s18 and s19.

Next, we consider run subsumption under the creditor state-similarity function σ.
Here, τ2[[σ]〉τ1. Also, since s21 ∈ σ(s4), τ1[[σ]〉τ2. Run τ3 subsumes both τ1 and τ2 for
the same reason, but neither τ1 nor τ2 subsumes τ3, since neither of them have states
that are σ-similar to s18 and s19.

[[σ]〉 is reflexive and transitive.

Reflexivity. Every run subsumes itself under σ, since [σ]〉 is reflexive over states.
Transitivity. If τj [[σ]〉τi, and τk[[σ]〉τj , then τk[[σ]〉τi, since τk has all states of τj

in the same temporal order, τj has all states of τi in the same temporal order, and σ
is transitive over states.

Figure 3(a) shows the subsumption relation between the runs τ1, τ2, and τ3 under
the identity function ι and Figure 3(b), under σ.

(a) ι subsumption (b) σ subsumption

Fig. 3. Subsumption of purchase protocol runs under ι and σ

3.3 The Protocol Algebra

Operationally, the runs allowed by a protocol completely characterize that protocol.
A protocol that allows many runs is better than one that allows a few runs, since the
many-run protocol affords more choice and flexibility in protocol execution to the par-
ticipants. Short runs are better because they require fewer messages. The definition of
the subsumption of protocols reflects these intuitions.

Every protocol P is considered to belong to a frame with enough propositions in
it to label all states that can occur in [[P ]]. A frame serves as a common ontology for
the propositions used by a protocol. Frames provide an upper bound on the universe of
discourse of a protocol.

Definition 3. A protocol Pj subsumes a protocol Pi under the function f if and only if,
every run in [[Pi]] subsumes, under f , a run in [[Pj ]].

Pj [[f ]〉Pi ⇐⇒ ∀τi ∈ [Pi] ∃τj ∈ [[Pj ]] : τi[[f ]〉τj (1)

•
•
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If Pj is a protocol that has short runs and Pi is a protocol that has long runs only, then
Pj subsumes Pi as long as each of Pi’s runs subsumes at least one of Pj’s runs. Since
long runs subsume shorter ones, protocols with long runs are subsumed by protocols
with short runs. The protocol-subsumption relation [[ι]〉 is reflexive and transitive because
of the reflexivity and transitivity of run subsumption under ι.

We now introduce our protocol algebra as consisting of two operators (merge and
choice), their identity elements ( and , respectively), and an ordering relationship
(subsumption, as defined above). Merge and choice are closed under frames meaning
that their result always belongs to the union of the frames of their argument protocols.

Merge. The merge operator, denoted by⊗f , splices two protocols under a state-similarity
function f so that refined protocols can be created from existing ones. A merge of two
protocols is a meshing of the runs of the protocols. Formally, P ⊗f Q = R such that
[[R]] = {r | ∃rp ∈ [[P ]] , ∃rq ∈ [[Q]] , r[[f ]〉rp and r[[f ]〉rq}.

Protocol concatenation is a special case of the merge operator. The concatenation of
two protocols is equivalent to performing one protocol followed by the other.

Choice. The result of a choice ⊕ of two protocols P and Q is a protocol R, whose
set of runs [[R]] contains exactly those runs that exist in the sets [[P ]] and [[Q]], so that
choosing a run from [[R]] is equivalent to choosing a run from either [[P ]] or a run from
[[Q]]. Formally, P ⊕Q = R such that [[R]] = [[P ]] ∪ [[Q]].

Constants. The properties of the merge operator lead us to define two protocols, and
. The protocol is an “impossible” protocol, which does not have any runs. = {}.

The protocol is a “trivial” protocol which allows the zero-length run. = {τφ}. The
and the protocols form the bottom and the top element, respectively, of a protocol

hierarchy based on the merge function. All protocols are subsumed by the protocol
and all protocols subsume the protocol.

Formal Results. We briefly present some formal results, which simplify reasoning
about protocols using our algebra. Since each run in [[P ⊗f Q]] subsumes a run each
from [[P ]] and from [[Q]], the following properties apply to the merge operator

1. The merge operator refines the protocols being merged.
P [[f ]〉(P ⊗f Q)
Q[[f ]〉(P ⊗f Q)

2. Since P ⊗f Q belongs to a frame that is the union of the frames of P and Q, the
merge of a protocol with itself yields the same protocol (idempotence).
P [[f ]〉(P ⊗f P )
(P ⊗f P )[[f ]〉P
(P ⊗f P ) = P

3. The merge operator is commutative and associative.
P ⊗f Q = Q⊗f P
P ⊗f (Q⊗f R) = (P ⊗f Q)⊗f R

4. Merge distributes over choice.
P ⊗f (Q⊕M) = (P ⊗f Q)⊕ (P ⊗f M)
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5. The merge of any protocol with gives that protocol and the merge of any protocol
with gives . In this way, the protocol is the identity element and the is
the nil element for merge.
P ⊗f = P
P ⊗f =

Choice also supports idempotence, commutativity, and associativity. The choice of a
protocol with yields and the choice of a protocol with yields that protocol itself.

1. Idempotence.
(P ⊕ P ) = P

2. Commutativity.
(P ⊕Q) = (Q⊕ P )

3. Associativity.
P ⊕ (Q⊕R) = (P ⊕Q)⊕R

4. Choice with and
P ⊕ =
P ⊕ = P

Applying the Algebra. Now we discuss how the algebra can be applied to create new
protocols. The choice operator⊕ allows us to choose between runs belonging to different
protocols. This operator can be used, for example, when multiple ways of payment exist,
such as payment by credit card, or payment by personal check. The result of the choice
operator is a protocol whose set of runs is larger and thus offers more choices than the
individual protocols to which the choice was applied.

The merge operator is more interesting. As an example of its application, consider
the run shown in Figure 1(c). This run belongs to the merge of the simple purchase
shown in Figure 1(a) and payment, shown in Figure 4(a). The merge is performed under
the creditor state-similarity function σ.

As a more complicated, consider a run of the refined purchase example as shown
in Figure 2. This run belongs to the refined purchase protocol, which is the result of
a merge of the simple purchase, the shipping, and the payment protocols. The state-
similarity function used here is αA,P . Under αA,P , A is a set of agents, p, a set of
propositions, and two states are similar if all commitments between agents agents in A
and all propositions in P that exist in one state also exist in the other. Under αA,P , where
A denotes the set containing the participants of Shipping, i.e., {b, x, c}, and P denotes
the set of all propositions that are used in Shipping, we see that the Shipping run shown
in Figure 4(b) is subsumed by the refined Purchase run shown in Figure 2. Specifically,
the states s3, s11, s12, s13, s14, s5, and s16 of refined Purchase are αA,P -similar to the
states s10, s11, s12, s13, s14, s15, and s16 of Shipping respectively. Similarly, the states
s4 and s21 of the refined Purchase are similar to states s20 and s21 of Payment under
αA,P , where A denotes {c, k} and P denotes the set of all propositions used in Payment.
Consequently, the refined Purchase run subsumes Payment. Note that Figure 2 shows
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Payer, r

sendMoney(k,e,p)

authPay(e,p) s20

s21
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(a) Payment via bank protocol
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reqQuote(m,s,[ gv] )
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s13s13

sendGoods(m,g,s)
s14

Shipper, sSender, m

s15
sendMoney(m,s,q)

s16
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Receiver, v

s
15

(b) Shipping protocol

Fig. 4. A payment and a shipping protocol

only one run of the refined purchase protocol. Given the semantics of the merge operator,
the refined purchase protocol allows more runs, since all valid interleavings of runs of
the merged protocols are allowed. One such run could be where the shipping protocol is
started before the first step of the purchase protocol. In practice, data dependencies and
temporal state ordering are specified to filter the set of runs generated by interleaving.

4 Discussion

We wish to develop rich abstractions methodologies that will ease the development of
large-scale open systems. This paper is part of our ongoing research in that direction.

The framework presented in this paper is intended to serve as the foundation for
developing design-time tools, not for automated, runtime composition. Complete au-
tomation of protocol composition would require a complete specification of the behav-
ior of a protocol. We believe that this is rarely the case when dealing with complex
agent interaction protocols that can find applications in business processes modeling or
Web Service composition. Most realistic settings require considerable context sensitive
information, which may be encoded as policies local to the agent. Such contexts may
be based on social motivations such as trust, economics, and profit, which can change
unpredictably. The autonomy of agents in a multi-agent system allows agents to behave
differently under different contexts. It is this dynamic behavior that makes the agent
paradigm attractive for application to open systems, and cannot be statically specified
for all but the simplest of agents. Our framework helps develop tools that aid protocol
designers in tailoring an existing protocol to meet their requirements by automatically
verifying properties of the designed protocol. An overview of the motivations for this
work and of the applications we envision for it is provided in [16].

Our understanding of protocols as specifications of the minimum states that a com-
putation should contain is analogous to the minimal process execution semantics as de-
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fined in the MIT Process Handbook [11]. There is an underlying assumption that concise
specifications are better than elaborate ones, since flexibility of a protocol is desirable
in business applications where opportunities can be profitably exploited. In some cases,
however, a maximal execution semantics might be applicable, e.g., in a protocol for which
compliance checking is costly or difficult or where unexpected actions are undesirable.

4.1 Literature

Our work relates to and draws both from well established and emerging fields. Busi-
ness processes have received much attention lately because of the economic benefits
of cross-enterprise business. Coordination and interaction protocols have been studied
by the agent research community so that agent conversations and interaction can be
computationally realized. We list here selected literature from both areas.

Workflows and Processes. Business processes have been traditionally automated as
workflows. Recently, the web service model has been applied to process automation.

Workflows have been studied extensively as Petri-net based models of business pro-
cesses [18, 19]. The Workflow Management Coalition (WfMC) is a standards body that
has created a reference model for workflows [5]. This model has two basic parts, a
modeling and an enactment part. The model prescribes a workflow engine as the system
that executes the workflow. These models specify a rigid sequence of steps. Workflows
require human intervention to handle most exceptions. Because of their inflexibility,
workflows have had only limited success.

The MIT Process Handbook [11] is a project that aims to create a hierarchy of
commonly used business processes. Based on this hierarchy, Grosof and Poon [8] develop
a system to represent and execute business rules.

Of late, web services have been touted as the solution to the business interoperability
problem. The need for process composition and interoperability has led to the develop-
ment of standards for orchestration and choreography of web services [12]. Orchestration
refers to intra-service planning and choreography to an overall view of inter-service co-
ordination. Here, we shall mention only two important standards, WSCI and BPEL4WS.
The Web Services Choreography Interface (WSCI) is an XML-based language that de-
scribes a service interface by the flow of messages sent and received by the service. The
standard, however, looks at protocols one level lower than our view, since each WSCI
specification corresponds to a role in our scheme. The Business Process Execution Lan-
guage for Web Services (BPEL4WS) is currently the most widely used web services
standard for describing business processes [1]. However, BPEL4WS is no more than a
procedural script encoded in XML.

Fu and colleagues [7] develop methods to verify if a given web service will adhere to
a given conversation protocol. Their work develops formal results about verification of
protocol compliance for protocols based on finite state machines. Hamadi and Benatal-
lah [9] develop a protocol algebra for petri nets and show its applicability to workflows
and web services. However, this approach suffers from the same pitfalls as workflows
modeled using Petri nets.

Interaction Protocols. Yolum and Singh [22] give one of the first accounts of the use of
commitments in modeling agent interaction protocols and the flexibility that it affords
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the participating agents. Fornara and Colombetti [6] describe how commitments relate
to FIPA-ACL messages and demonstrate with an example. Both approaches highlight
the benefits of a commitment-based approach to interaction protocol design.

Johnson et al. [10] develop a scheme for identifying when two commitment-based
protocols are equivalent. Their scheme, however, is simplistic, classifying protocols
based solely on their syntactic structure. Our work provides stronger results about the
relationships between protocols from an application point of view and relates better to
the Web Services approach.

Bussmann et al. [2] present a design methodology to aid in the selection of a pro-
tocol from a library of existing protocols to apply to agent-based control applications.
They identify criteria like the number of agents, the number of roles, and the number
and kind of commitments and use these to select a protocol from an existing pool of
interaction protocols. This approach is quantitative, and lacks a formal semantics to base
the methodology on.

Pitt and Mamdani [13] describe a semantics for agent interaction protocols using the
Belief-Desire-Intention (BDI) theory. Using this semantics, they outline the design of
a system of agent plans that are instantiated by agents to carry on conversations with
other BDI agents. In our work, an agents beliefs, desires, and intentions are private to
that agent. We work with social commitments which are observable by all agents and
whose breach is easier to verify.

In more recent work, Vitteau and Huget [21] describe an approach for designing
agent interaction protocols using modular micro-protocols. This scheme is similar to
our protocol design proposal in spirit. However, Vitteau and Huget do not provide a
formal basis for putting protocols together.

4.2 Conclusions and Directions

The above is a semantic approach to commitment protocols that yields a simple algebra
for protocols. This algebra provides a basis for conceptual reasoning about protocols in
terms of refinement and aggregation, which is essential if we are to engineer protocols
that way other software systems are engineered. To our knowledge, this work is unique
in formulating the problem of problem design at a conceptual level. Partly, it derives it
uniqueness from a careful consideration of the commitments that underlie protocols in
multiagent settings.

This work opens up some interesting challenges. One, it would help consider how
the algebra will work with more subtle kinds of state similarity functions. Two, the
abstractions supported by our algebra must be woven into a methodology for designing
protocols. Three, such methodologies should be supported by tools that give appropriate
reasoning assistance to designers.
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Abstract. In open distributed multi-agent systems, agents often coordinate 
using standardized agent communications. Thus, representing agent 
conversations is an important aspect of multi-agent applications. Lately, Petri 
nets have been found to provide certain advantages comparing to other 
representation approaches. Radically different approaches using Petri nets to 
represent multi-agent interactions have been proposed, and yet relative 
strengths and weaknesses of these approaches have not been examined. 
Moreover, no approach was shown to provide a comprehensive coverage of 
advanced standardized communication aspects such as those found in FIPA 
interaction protocols. This paper presents (i) an analysis of existing Petri net 
representation approaches in terms of their scalability and appropriateness for 
different tasks; (ii) a novel scalable representation approach, particularly suited 
for monitoring open systems; and (iii) a skeletal procedure for semi-
automatically converting FIPA interaction protocols to their Petri net 
representations. We argue that the representation we propose is comprehensive, 
in the sense that it can represent all FIPA interaction protocol features. 

1   Introduction 

Open distributed multi-agent systems often involve multiple, independently-built 
agents performing mutually dependent tasks. To allow different agents designs to be 
developed independently, without having to consider the internal design of other 
agents, the coordination of the activities is often accomplished using standardized 
inter-agent interactions, typically by communications. Indeed, the multi-agent 
community has been investing a significant effort in developing standard 
communication languages to facilitate sophisticated multi-agent systems (e.g., FIPA 
communication standards [4]). These languages define agent interaction protocols that 
rely on pre-defined communicative acts for a variety of system tasks, ranging from 
simple queries, to complex negotiations by auctions and bidding. For instance, FIPA 
Contract Net Protocol [4] defines possible sequences of concrete messages that allow 
the interacting agents to negotiate.  

Ideally, interaction protocols should be represented in a way that allows 
performance analysis, validation and verification, automated monitoring, debugging, 
etc. Various formalisms have been proposed for such purposes. However, Petri nets 
                                                           
*  This research was supported in part by BSF grant #2002401. 



 A Scalable Petri Net Representation of Interaction Protocols for Overhearing 51 

 

have been shown to offer significant advantages in representing multi-agent 
interactions, compared to other approaches [2,8,9,10]. Specifically, Petri nets are 
useful in validation and testing, automated debugging and monitoring [13] and 
dynamic interpretation of interaction protocols [3]. 

Unfortunately, existing literature on using Petri nets to represent multi-agent 
interactions leaves open several questions. First, different approaches to represent 
multi-agent interactions have been introduced, and yet their relative strengths and 
weakness have not been investigated. Second, most previous investigations have not 
provided a systematic comprehensive coverage of all issues that arise in representing 
complex protocols such as the standardized FIPA interaction protocols.   

This paper addresses these open challenges. We analyze and compare existing 
approaches to representing interactions using Petri nets (Section 3). This comparison 
is done based on the type of Petri net chosen, its choice of representing individual or 
joint states, and explicit representation of messages. We then present a novel scalable 
representation that uses Colored Petri nets in which places explicitly denote joint 
conversation states and messages (Sections 4). This representation can be used to 
cover essentially all features used in FIPA conversation standards, including 
interaction building blocks, communicative act attributes (such as message guards and 
cardinalities), protocol nesting and temporal aspects (e.g., deadlines and duration). 
Finally, we provide a skeletal algorithm for converting FIPA conversation protocols 
in AUML, i.e. Agent UML, (the chosen FIPA representation standard [4,11]) to Petri 
nets (Section 5). Section 6 concludes. 

2   Background  

We begin first with a brief overview of Petri nets, and then survey existing 
approaches that use Petri nets in representing multi-agent interactions. 

Petri nets are a graphical representation for describing systems in which multiple 
concurrent states may exist. An early elaboration of Petri nets is called 
Place/Transition nets (PT-nets), while another high-level extension is called Colored 
Petri nets (CP-nets) [6].  

A PT-net is a bipartite directed graph where each vertex is either a place (typically 
denoted by circles) or a transition (rectangles). Arcs are directed edges connecting 
places to transitions and vice versa. A place can contain tokens (small black dots). An 
assignment of tokens to places is called a marking. Arcs may have associated integer 
expressions, which determine the number of tokens associated with the corresponding 
arc. A transition is enabled if and only if the marking of its input places satisfies the 
appropriate arc expressions. It then fires, carrying tokens from its input places, per the 
output arc expressions, to its output places. 

In CP-nets, tokens carry information, called color [6]. Token color may be simple 
or complex, e.g. a tuple. Each place contains only tokens of a specified color. CP-net 
arc expressions are also extended, to allow complex expressions over colored token 
variables associated with the corresponding arcs. CP-nets also use transition guards, 
boolean expressions over token color attributes, which determine transition firing. 
CP-nets contain additional extensions, which can be useful in representing complex 
AUML features. Further detail can be found in [5]. 
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We now turn to using Petri nets to explicitly represent multi-agent conversations. 
All Petri net representation approaches of this type use places to represent interaction 
states, and Petri net transitions to represent transitions between interaction states. Net 
marking represents the current state of interaction. However, previous investigations 
take different design choices within this general approach. 

Individual Roles and CP-Nets. Most investigations choose to separately represent 
individual roles within the interaction, rather than represent joint interaction states. In 
this approach, separate places are used for separate roles in the interaction, and thus 
different markings distinguish a conversation state where one agent has sent a 
message, from a state where the other agent received it. Typically, the net for each 
individual role is built separately, and then these nets are either merged into a single 
net [2,8,9], or simply connected together using Petri net fusion places, or other means 
[3,14]. All these investigations use CP-nets to represent multi-agent interactions. As 
shown later in the paper, the use of token color allows compact representation of 
multiple conversations using the same net. 

Joint-State Representations Using PT-Nets. In contrast, a limited number of 
investigations model conversations using PT-nets with joint conversation states 
[10,13].

1
 In joint state representations, each net place is at once a representative of the 

conversation state of all agents. Typically, markings represent only valid conversation 
states (thus the nets ignore transmission delay, etc.), and synchronization protocols 
are implicitly assumed to underlie the conversation, to make sure that the agents are 
synchronized [12]. 

3   Analysis of Key Representations 

The survey of related work presented above indicates that previous investigations 
have introduced rather different approaches to the modeling of multi-agent 
interactions using Petri nets. This section offers a comparative analysis of these 
approaches on the basis of several criteria: scalability (Section 3.1), and suitability for 
monitoring tasks (Section 3.2). 

3.1   Scalability 

We have classified previous approaches based on (i) their representation of individual 
conversation states vs. joint states, and on (ii) their utilization of token color. We now 
show how these two independent features affect the scalability of the chosen 
representation in terms of the number of conversations.  

In principle, for a conversation that has R roles, with M messages, a representation 
which explicitly differentiates the conversation state of each role would have O(MR) 
places: For every message there would be two individual places for the sender (before 
sending, and after sending), and similarly two more for each receiver (before 

                                                           
1
  Though authors claim otherwise, they in fact ignore color, using CP-nets as if they were PT-
nets. For instance, Nowostawski et al. [10] duplicate portions of Petri net to represent 
multiple conversations, rather than using color tokens within a single net. 
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receiving and after receiving). All possible joint states (i.e. message sent and received, 
sent and not received, not sent but incorrectly believed to have been received, not sent 
and not received) can be represented. In cases where all joint states must be 
represented (including all erroneous states), this representation is preferable to an 
explicit joint-state representation which would require O(MR) places. 

However, many applications only require representation of valid conversation 
states (message not sent and not received, or sent and received). For instance, the 
specification of the FIPA interaction protocols [4] implicitly assumes the use of 
underlying synchronization protocols to guarantee delivery of messages [12]. Under 
such assumption, for every message, there are only two joint states regardless of the 
number of roles: before the message is sent, and after the message is sent and 
received. The number of places representing joint conversation states grows (linearly) 
in this case only with the number of messages – O(M). 

We now turn to examining the use of color tokens. In principle, CP-nets and PT-
nets are equivalent from a computational perspective [6], in much the same way the 
high level programming languages are no more powerful in principle than assembly. 
However, when representing conversations, a significant difference between PT-nets 
and CP-nets is their scalability. A PT-token corresponds to a single bit. The 
information it conveys is a function of the place it is marking. As a result, it is 
impossible to represent several concurrent conversations in the same PT-net, since the 
tokens representing the different states of the conversations may overwrite each other, 
or cause the net to fire erroneously. Therefore, representing C concurrent 
conversations–all of the same interaction protocol–would require O(C) PT-nets. 

In contrast, however, colored tokens can be differentiated, even when multiple 
tokens mark the same net. For instance, in the representation we present in Section 4, 
token colors carry information about the sender and receivers of messages, about the 
time in which the message was sent, etc. This information allows us to represent 
multiple concurrent conversations–of the same protocol–on a single CP-net structure. 
Note that we save only on the number of nets explicitly represented–the number of 
tokens for representing C conversations is O(C) in either a PT-net or CP-net 
approach. 

There are some additional differences between CP-nets and PT-nets, in terms of 
features that support representation of FIPA interaction protocols, such as guards, 
sequence expressions, cardinalities and timing [4]. Representation of FIPA attributes 
is straightforward using the additional information carried by token color (a more 
detailed discussion can be found in [5]). 

Table 1. Scalability Comparison 

 PT-nets CP-nets 

Individual 
States Space: O(MRC) 

Space: O(MR) 
[2],[3],[8],[9],[14] 

Joint States 
Space: O(MC) 

[10],[13] Space: O(M) 
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Based on the above, it is possible to make concrete predictions as to the scalability 
of different approaches with respect to the number of agents. Table 1 above shows the 
space complexity of different approaches, given that we model C conversations, each 
with a maximum of R roles, and M messages. The table also cites relevant 
investigations. 

3.2   Monitoring Conversations 

There are many different uses for a representation of an interaction: To monitor its 
progress, to detect faults [13], to verify or analyze its features, etc. We focus here on 
monitoring, and distinguish two settings, depending on the information available to 
the monitor. 

In the first type of setting, the monitor, representing the conversation, has access to 
the state of the conversation in one or more of the participants, but not to the 
messages being exchanged. This would be the case, for instance, if a participant in a 
conversation is monitoring its own progress. In this case, the participant has access to 
its own conversation state, but likely, does not have direct knowledge on whether 
messages were sent or received by others. Therefore, messages are not explicitly 
represented, except as transitions that take the conversation from one place to another 
(regardless of whether these places are represented individually or jointly). By placing 
tokens in the appropriate conversation places, an agents’ state can be inferred. Then, 
letting the corresponding transition fire implies the message being sent and received. 
Previous works that have taken this approach include [2,8,9].2 

In the second type of settings, the monitor has knowledge of the messages being 
sent and received, but does not necessarily know the internal conversation state. It 
monitors conversations by tracking the messages (e.g., through overhearing [7]). This 
could be done either from an individual perspective, or in settings of a global monitor 
that does not have direct knowledge of the conversation state of each agent. However, 
this requires the use of separate message places. In this type of representation, a state 
place and a message place are connected via a transition to a new state. A monitoring 
agent in this case places a token in the appropriate message place whenever it 
intercepts a message. Together with conversation state places, these tokens allow the 
conversation to transition from one conversation state to a new conversation state 
only based on explicit knowledge of the message being sent or received. In principle, 
given the current state, the new conversation state can be inferred from “observing” a 
message. Previous work that has used explicit message places include [2,3,10,13,14]. 

4   Scalable Representation for Overhearing 

In this section, we focus on developing a scalable representation for overhearing. The 
design choices are dictated by the insights gained in the previous section. Thus, the 
clear choice in terms of scalability is the approach combining CP-nets with places 
representing joint interaction states. In addition, since in overhearing we only expect 
to have knowledge of messages being exchanged, we use explicit message places. 
Unfortunately, previous investigations did not explore this design, though the work in 
[13] explores similar ideas using PT-nets. 

                                                           
2  In the same publication, Cost et al. [2] also use the other approach. 
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We now show how various simple and complex AUML interaction features, used 
in FIPA conversation standards [4], can be implemented using the proposed CP-net 
representation.  

We begin by examining a simple agent conversation building block, corresponding 
to a FIPA asynchronous message, which we first show in AUML (Figure 1-a) and 
then using our CP-net representation (Figure 1-b). Here, agent1 sends an 
asynchronous message msg to agent2. In Figure 1-a, the msg communicative act is 
shown by the arrow connecting the lifelines of the corresponding agents. The stick 
arrowhead denotes that msg is passed asynchronously (see [1,4,11] for AUML 
details). 

To represent the same conversation using a CP net, we first identify net places and 
transitions. The representation we develop uses two types of places, corresponding to 
messages and joint conversation states (as previously described). Figure 1-b shows 
the asynchronous message implementation using our CP-net model. This CP-net 
shows three places and one transition connecting them. The A1B1 and the A2B2 places 
are agent places, while the msg place is a message place. The A and B capital letters 
are used to denote the agent1 and the agent2 individual interaction states respectively. 
We have indicated the individual and the joint interaction states over the AUML 
diagram in Figure 1-a, however these details are omitted later on in the paper. The 
A1B1 place indicates a joint interaction state where agent1 is ready to send the msg 
message to agent2 (A1) and agent2 is waiting to receive the corresponding message 
(B1). The msg message place corresponds to the msg sent and received. The 
interception of the msg (and placing a corresponding token) causes the agents to 
transition to the A2B2 place. This place corresponds to the joint interaction state in 
which agent1 has already sent the msg communicative act to agent2 (A2) who has 
received it (B2). 

 

A1B1
msg

INTER-
STATE MSG

INTER-
STATE

<s,r> <s,r>

<r,s>

A2B2

 color AGENT = …;
 color INTER-STATE =
          record a1:AGENT*
                     a2:AGENT;
 color MSG = record
          s:AGENT*r:AGENT;
 var s,r:AGENT;

 

     (a)                                    (b) 

Fig. 1. Asynchronous message interaction (a) AUML (b) CP-net representations 

The CP-net implementation in Figure 1-b introduces the use of token colors to 
represent additional information about agent interaction states and communicative 
acts of the corresponding interaction. The token color sets are defined in the net 
declaration (dashed box in Figure 1-b). The syntax follows standard CP-notation [6]. 
The AGENT color is used to identify agents participating in the corresponding 
interaction. This color is further used to construct the two net compound color sets. 
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The first color set is INTER-STATE. This color set is related to the net agent places and 
it is applied to represent agents corresponding to the appropriate joint interaction 
states. The INTER-STATE color token is a tuple (record) <a1,a2>, where a1 and a2 are 
AGENT color elements of the interacting agents. We apply the INTER-STATE color set 
to model concurrent conversations using the same CP-net. The second color set is 
MSG. The MSG color set describes interaction communicative acts and it is associated 
with the net message places. The MSG color token is a record <s,r>, where the s and r 
elements determine the sender and the receiver agents of the corresponding message. 

Therefore, in Figure 1-b, the A1B1 and the A2B2 places are associated with the 
INTER-STATE color set, while the msg place is associated with the MSG color set. The 
place color set is written in italic capital letters next to the corresponding place. 
Furthermore, we use the s and r AGENT color type variables to denote the net arc 
expressions. Thus, given that the output arc expression of both the A1B1 and the msg 
places is <s,r>, the a1 and a2 elements of the agent place token must correspond to the 
s and r elements of the message place token. Consequently, the net transition occurs if 
and only if the addressed agents of the message correspond to the interacting agents.  

Figures 2 through 4 show similar mappings between AUML representation of FIPA 
building blocks, and their CP-net equivalents. Figure 2 shows synchronous message 
passing, denoted through the filled solid arrowhead, meaning, that an 
acknowledgement of msg communicative act must always be received by agent1 before 
the interaction protocol may proceed.  Figure 3 shows a more complex interaction, 
called XOR-decision. In this interaction, the sender can send only one of the two 
possible messages to the designated recipients. The figure shows the use of a joint state 
for the three agents (the A1B1C1 place). Figure 4 shows another complex interaction, 
the OR-parallel interaction, in which the sender can send one or two communicative 
acts (inclusively) to the designated recipients simulating an inclusive-or. As shown, 
agent1 can send message msg1 to agent2 or message msg2 to agent3 or both. 

 

A1B1
msg

INTER-
STATE MSG

INTER-
STATE

<s,r> <s,r>

<r,s>

A1’B1’

ack-msg

MSG

<s,r>

INTER-
STATE

<s,r>

<s,r>

A2B2  

       (a)              (b) 

Fig. 2. Synchronous message interaction (a) AUML (b) CP-net representations 
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(a)        (b) 

Fig. 3. XOR-decision messages interaction (a) AUML (b) CP-net representations 
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     (a)                (b) 

Fig. 4. OR-parallel messages interaction (a) AUML (b) CP-net representations 

We now extend our technique to facilitate the implementation of additional 
interaction aspects useful in describing multi-agent conversation protocols. First, we 
use CP-nets to represent interaction message attributes used by FIPA conversation 
standards such as guards, sequence expressions, cardinalities, etc [4]. Second, we 
demonstrate representation of multiple agent concurrent conversations using the same 
CP-net. 

Figure 5-a demonstrates a conditional agent interaction using AUML. This 
interaction is similar to Figure 1-a above, except for the use of the message guard-
condition [condition]. Its semantics are that msg is sent if and only if the condition is 
true. Fortunately, message guard-conditions can be mapped directly to a CP-net 
transition guard (indicated next to the corresponding transition using square brackets 
in Figure 5-b). The transition guard guarantees that the transition is enabled if and 
only if the transition guard is true. 
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A1B1
msg

INTER-
STATE MSG

INTER-
STATE

<s,r> <s,r,t,c>

<r,s>

A2B2

[condition]

 
(a)              (b) 

Fig. 5. Message guard-condition (a) AUML (b) CP-net representations 

In Figure 5-b, we also demonstrate the CP-net implementation to message type and 
content attributes. For that purpose, we define two additional colors. The first, TYPE 
color, determine a message type, while the second, CONTENT color, represents 
message content. Furthermore, we extend the MSG color set, previously defined, to 
allow information passing between agents. Thus, the MSG color token is a record 
<s,r,t,c>, where the s and r elements has previous interpretation and the t and c 
elements define the message type and content. 

Additional communicative act attributes include message sequence-expression and 
cardinality. In FIPA [4], sequence-expressions denote a constraint on the message 
sent from an agent: m denotes that the message is sent exactly m times; n..m denotes 
that the message is sent  n up to m times; {*} denotes that the message is sent an 
arbitrary number of times.  

In this paper, we focus on a non-FIPA extension commonly used–the broadcast 
sequence expression, which denotes the broadcast sending of a message to all 
recipients on a list. In Figure 6 we show its representation using CP-nets. For this 
purpose, we define an INTER-STATE-CARD color set. This color set is a tuple (<a1,a2>, 
i) consisting of two elements. The first tuple element is an INTER-STATE color 
element, which denotes the interacting agents as before. The second tuple element is 
an integer i that counts the number of messages already sent by an agent–message 
cardinality. This element is initially assigned to 0. The S1R1 place is of color INTER-
STATE-CARD. Two additional colors are BROADCAST-LIST (defining the sender's list 
of receivers) and TARGET (index into this list). 

The key novelty in Figure 6 is the use of the condition on the first transition, 
coupled with the arc looping back to S1R1. The initial marking of S1R1 is a single 
token (<s,TARGET(0)>,0), pointing at the first receiver on the broadcast list as the 
target, with message cardinality counter initiated to 0. On the other hand, the msg1 
message place initially contains multiple tokens. Each of these tokens represents the 
msg1 message addressed to a designated receiver on the broadcast list. The S1R1 place 
token and the appropriate msg1 place token together enable the corresponding 
transition. It fires, thus representing the sending of msg1 to the first receiver on the 
broadcast list. 
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1`(<s,TARGET
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 color AGENT = …;
 color TYPE = …;
 color CONTENT = …;
 color INTER-STATE = record a1:AGENT*

      a2:AGENT;
 color CARD = int;
 color INTER-STATE-CARD =  product

           INTER-STATE*CARD;
 color MSG = record s:AGENT*r:AGENT*

 t:TYPE*c:CONTENT;
 color BROADCAST-LIST = AGENT with…;
 val size = …;
 color TARGET = index BROADCAST-LIST

       with 0...size-1;
 var s,r:AGENT;   var msg:MSG;  var i:CARD;

 

Fig. 6. Broadcast in CP-net representation 

The arc looping back to S1R1 has an arc expression which increments the index i. 
Thus after the initial firing, a new token is placed in S1R1, pointing at the next 
recipient on the broadcast list. This recipient is matched with the appropriate token in 
the msg1 place, and again the transition would fire, indicating transmission and receipt 
of msg1 by the second receiver. The process continues while the condition on the 
transition holds, i.e., while the index i is smaller the size of the broadcast list. 

The use of token color allows multiple conversations to be concurrently tracked 
using the same CP-net. For instance, in Figure 6, let the sender agent be called agent1 
and its broadcast list contain agents agent2,…, agent6. Suppose agent1 has already sent 
msg1 to all agents on the broadcast list, but has only received the msg2 reply from 
agent3, agent4 and agent6. The CP-net marking for this state would be: (i) The S2R2 
place marked {<agent2, agent1>, <agent5, agent1>}; and (ii) the S3R3 place marked  
{<agent1, agent3>, <agent1, agent4>, <agent1, agent6>}. The different tokens, that 
are distinguishable because of the token color, differentiate concurrent conversations 
involving agent1, using the same CP-net. This is a significant improvement over PT-
net representations. 

Due to space constraints, we cannot show how the proposed CP-net representation 
is amenable to represent all FIPA AUML building blocks (and additional features, 
such as deadlines and nested protocols). The reader is referred to [5] for such details. 

5   Algorithm and Concluding Example 

Previous investigations have explored various machine-readable Petri net 
representations. However, interaction protocols are typically specified in human-
readable form (e.g., in AUML [1,11]). The question of how to systematically translate 
an interaction protocol specification into a machine-readable form has been 
previously ignored. We present a semi-automated procedure for transforming an 
AUML protocol diagram of two interacting agents to its CP-net representation. While  
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not fully automated, we believe that it represents a significant step towards fully 
automatic translation. We apply this algorithm on a complex multi-agent conversation 
protocol that involves many of the interaction aspects already discussed. 

The procedure is presented in Figure 7. Its input is an AUML diagram, and its 
output is a corresponding CP-net representation using joint states and explicit 
message places. The CP-net is constructed in iterations: The algorithm essentially 
creates the conversation net by exploring the interaction protocol breadth-first, while 
avoiding cycles. Lines 1-2 create and initiate a queue and the output CP-net 
respectively. The queue, denoted by S, holds the initiating agent places for the current 
iteration. These places correspond to interaction states that initiate further 
conversation between the interacting agents. In lines 4-5, an initial agent place, A1B1, 
is created and inserted into the queue.  

We enter the main loop in line 8 and set curr to the first initiating agent place in S. 
Lines 10-13 create the CP-net components of the current iteration. First, in line 10, 
message places, associated with curr agent place, are created using 
CreateMessagePlaces. These places correspond to communicative acts, which take 
agents from the joint interaction state curr to its successor(s). Then, in line 11, we 
create agent places that correspond to interaction state changes as a result of these  
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Fig. 7. AUML to CPN Conversion Procedure 
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messages associated with curr agent place. Then, in CreateTransitionsAndArcs (line 
12), these places are connected through transitions and arcs, using the CP-net building 
blocks described previously, and in [5]. Finally, we add token color elements to the 
CP-net structure, implementing attributes using FixColor (line 13). 

Lines 15-20 determine agent places that are inserted into S for further iteration. 
Only non-terminating agent places, corresponding to non-terminal interaction states, 
are inserted into S (lines 18-19), with the exception of places that have already been 
handled (lines 16-17).  Completing the iteration, the output CP-net, denoted by CPN, 
is updated according to the current iteration CP-net components in lines 22-24. The 
loop iterates as long as S contains places that have not been handled. Finally, the 
resulting CP-net is returned (line 27). 

To demonstrate this algorithm, we now use it to construct a CP-net of the FIPA 
Contract Net Interaction Protocol [4] (shown in AUML in Figure 8). In this protocol, 
the Initiator agent issues m calls for proposals using a cfp message. By a given 
deadline, each of the Participants may send either a refuse message (terminating the 
interaction), or a propose message containing a counter-proposal. Once the deadline 
expires, the Initiator evaluates received proposals and selects agents to perform the 
requested task. Selected participants are sent an accept-proposal message, while 
others are sent a reject-proposal. Selected participants carry out their task, and upon 
completion, send either an inform-done, an inform-result, or a failure message. 

reject-proposal

accept-proposal

failure

inform-done:inform

inform-result:inform

l=j-k

k2j

propose

n
refusei2n

j=n-i

cfp m

Initiator Participant

 

Fig. 8. FIPA Contract Net using AUML 

We now use the algorithm introduced above to create a CP-net for this protocol, in 
four iterations of the main loop. The algorithm begins with the creation (and insertion 
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into S) of the I1P1 place, of INTER-STATE color. Thus, in the first iteration, the curr 
variable is set to I1P1. The algorithm creates net places, which are associated with the 
I1P1 place, i.e. a cfp message place and an I2P2 resulting agent place. Then, the three 
places are connected using the asynchronous message building block shown in Figure 
1-b. Next, the color sets of the corresponding places are determined, and the algorithm 
also handles the broadcast sequence-expression attribute of the cfp message, as shown 
in Figure 6. Accordingly, the color set associated with I1P1 place, is changed to the 
INTER-STATE-CARD color set. The I2P2 is not a terminating place (Initiator is waiting 
for a response from Participants) and is thus inserted into the S queue. 

In the second iteration, curr is set to the I2P2 place. A Participant can send either a 
refuse or a propose messages, and thus appropriate message places are created. Then, 
the I3P3 and I4P4 agent places, corresponding to the results of the messages, are 
created. The I2P2, Refuse, I3P3, Propose and I4P4 places are connected using the XOR-
decision described in Figure 3-b. Then, the deadline sequence expression of both the 
refuse and the propose messages is implemented as shown in [5]. The I3P3 place 
(resulting from refuse) is a terminal interaction state, while the I4P4 place represents a 
non-terminal state. Thus, only I4P4 is inserted into S. 

For lack of space, we now skip over the final two iterations of the main loop, to 
the resulting CP net (Figure 9). The only items of interest in these skipped iterations 
involve the creation of the guard conditions on the transitions (see Figure 5-b), and 
the abstraction of the two inform messages (inform-done, inform-result) into a 
single message place marked inform. A detailed discussion of their creation is 
provided in [5]. 
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Fig. 9. FIPA Contract Net using CP-net 
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Although this procedure can convert many 2-agent protocols in AUML to their 
CP-net equivalents, it does not address the general n-agent case. We leave this 
development to future work. 

6   Summary and Conclusions 

Over recent years, increasing attention has been directed at representations of agent 
conversations. In particular, there is an increasing interest in using Petri nets to model 
multi-agent interactions [2,9,10,14]. Unfortunately, features of competing approaches 
with respect to scalability and suitability for different tasks have not been analyzed. 
Furthermore, no procedures were provided that guide the conversion of an interaction 
protocol given in AUML (the FIPA standard human-readable representation [4,11]) to 
any of the Petri net representations. 

This paper sought to address these open questions. First, we analyzed key features 
in existing representation approaches. We have shown that (i) when representing valid 
conversations, a CP-net, where places denote joint conversation states, scales better 
than other approaches; (ii) message places are necessary for tracking conversations by 
overhearing. Unfortunately, previous work did not examine this combination of CP-
nets with joint states and message places. 

We therefore developed this representation to target scalable overhearing and 
monitoring tasks. We provided building blocks allowing this representation to model 
complex multi-agent conversations as defined by FIPA [4]. Finally, we have 
presented a skeleton semi-automated procedure for converting an AUML protocol 
diagrams to an equivalent CP-net, and demonstrated its use on a challenging FIPA 
conversation protocol. 

We believe that the proposed technique can assist and motivate continuing 
research on representing conversations for tasks other than overhearing, e.g., 
debugging [13], automated monitoring [7], etc. 
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Abstract. Agent communication is currently a one-to-one communica-
tion, that is, a communication la Shannon from a sender to a receiver
via a communication channel. Such approach is restrictive in the con-
text of multiple agents interacting each other. In this paper, we propose
to extend agent communication to multi-party communication, that is,
communication with several agents. Each agent is able to react to the
message even if it is not the addressee. We describe in this paper the
communication server for multi-party communication.

1 Introduction

Early work in agent communication take roots in distributed system communi-
cation and as a consequence, favor one-to-one communication: a speaker com-
municates with an addressee [7]. Even if this approach could be quite efficient
in some specific cases where it is unnecessary to have auditors and overhearers,
such approach is rather restrictive and does not offer good support for argumen-
tation and multiagent communication. Agents are not able to hear the dialogue
moves from other agents and cannot react in a specific way. For instance, in
argumentation, it is interesting for agents to hear moves from other agents in
case they disagree with the argument or to defend an argument if they agree
and the speaker has no more argument to give. Argumentation is not the unique
domain of interest for multi-party communication as suggested in [8] where it
is used in training. Few work exist on multi-party communication, we can only
quote [8], [2] and [6]. The first one focuses on multi-modal multi-party dialogues
where verbal and non-verbal behaviors are used for dialogues, focus of attention
and initiative. The second one concentrates on a system for multi-party dia-
logues based on a blackboard. Finally, in the third one, Ricordel et al. describe
multi-dialogism based on the Ethernet protocol, that is, agents are on a ring and
receive messages serially.

The work presented here proposes a communication server for multi-party
communication. This work is related to the one described in [2]. The communi-
cation server depicts three different modes of communication: (1) public where
speaker, addressees, auditors and overhearers can hear the message (see [2] for a
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detailed description of these roles), (2) mute where only speaker and addresses
hear the message. However, other agents are aware of this conversation, and
finally (3) private where the conversation is not disclosed outside the speaker
and addresses. Other agents are unaware of this conversation. There are two
structures for communication: (1) a forum and (2) within the environment. The
first option is used when messages have to be stored and retrieved by agents
joining during the communication. The forum is similar to those used in chats
on the Internet. Forums are preferable for argumentation systems. The second
option is used when agents share a common “physical” environment and in spe-
cific applications where it is more efficient and simpler to use the environment
as communication medium. An outstanding example is the use of MASSIVE in
the Lord of the Rings movie to realize the battle of Helm’s deep. Each fighter
indicate his attack to his opponent. The opponent adequately answers to this
attack. Coordination and cooperation are two other examples of multi-party
communication that can be efficiently performed via the environment.

A comparison between our approach and the one in [2] is given in Section 8.
The remaining of this paper is structured as follows. Section 2 describes

the differences between agent communication and multiagent communication.
Section 3 presents the three different modes of communication in our approach:
public, mute and private communications. The next three sections depicts these
modes of communication. Section 7 presents applications of the public mode of
communication. Finally, Section 8 compares our approach and the one in [2].
Section 9 concludes the paper and gives future directions of work.

2 Agent Communication Versus Multiagent
Communication

Agent communication (opposed to multiagent communication) is a one-to-one
communication, that is a speaker utters speech acts to a single addressee. One-
to-many agent communication, such as the one we can found in the Contract Net
protocol [1] is artificial since it corresponds to many one-to-one communication.
Bidders cannot hear offers from other agents to make proposals. Actually, there
are several features that characterize one-to-one communication:

– Communications are between two agents: a speaker and an addressee,
– Communications are privileged to two agents. That is, it is not possible for

other agents to hear these communications,
– Entering and leaving communications are subject to agreement from other

agents, particularly in dialogue games where there are dedicated speech acts
for this purpose [5] and

– Termination of communications is necessarily known before beginning the
communication.

Some features seem to be in opposition with the idea of multiagent systems.
The remaining of this section reviews these features in the basis of a multiagent
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communication. This will give us the structure for multiagent communication
and the features that should have the communication server.

1. Except private conversations that should not be disclosed, communications
should not be restricted to a communication between two agents. It is fre-
quently the case in human conversations that humans intervene in conversa-
tions where they are not either the speaker or the addressee. This is due to
the fact that humans hear the content of the conversation (or bribes of it)
and consider of importance to give their opinion. Multiagent communication
should depict this feature of a communication where, potentially, all agents
can hear the conversations, except if the conversation is considered as private.
Actually, one needs three different kinds of communication: communications
with potentially many hearers, private communications but agents are able
to see that agents are whispering and finally, private communications where
agents outside of the communication are unaware of this communication,

2. Multiagent communication should be like reactive communication based on
pheromones, that is, it is only possible for agents to hear communications
close to them and not communications that are too far. It is then impor-
tant to add the notion of earshot, earshot can be from whispering (private
communications) to harangue where even further agents can hear,

3. Multiagent systems are open systems, as a consequence, agents can enter
and leave at any moment during the conversation. It should be the same in
multiagent communication. One issue arises from this openness: addressees
can disappear before the message arrives to them. Multiagent communication
needs, more than before, to be asynchronous in the sense agents in a protocol
should have an exit if the participant to the protocol is no longer present,

4. Termination of communications is not necessarily decided before beginning
the communication. Termination can happen if no more communication is
needed—there is no more argument against a proposal—, or if a certain
event appears such as weariness in a long-lasting negotiation or an external
event modifies the subject of the communication—the subject of dispute is
no longer present,

5. Finally, a main difference lays in the turn taking of multiagent communica-
tion. In a one-to-one communication, especially for protocols, agents know
when they have to speak but this is not necessarily the case in multiagent
communication: some agents can interrupt other agents or they can mo-
nopolize the conversation. It is then required to augment the framework to
consider these features and above all, the ability to avoid an agent to speak
if it speaks too frequently or if it monopolize the conversation.

3 Three Modes of Communication

Agent communication is based on Shannon’s ideas [7], that is, a message is sent
from a sender to a receiver via a medium also called a communication channel.
As a consequence, communication between agents is private to these agents. It
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is then not possible to send the same message to all the agents and to see the
answers without using a multicast or a broadcast mechanism. Moreover, hearing
the message assumes that the agent is recognized as member of this communica-
tion. An agent cannot overhear the communication and intervene if needed. In
our proposal, this mode of communication is called the private mode since this
thread of communication is only visible to which belonging to it. We consider as
well two other modes of communication: the public mode and the mute mode.
Actually, the public mode comes from the Internet multi-party communication
where chats and forums are accessible to everybody and even if a message is
addressed to a specific addressee, everybody can read the message, and they can
answer to the message. We really are in a many-to-many communication. Finally,
the mute mode corresponds to private conversations in theater. Other agents can
see that these agents discuss together but they cannot hear what it is said.

The two main modes are the public and the private modes. The mute mode is
frequent on chats and forums when two persons want to exchange messages with-
out disclosing them to other persons. We add this mode to be consistent with this
approach but this mode is of limited use for the moment in agent communica-
tion. It may have an application in human-lifelike applications and games. The
interest in comparison with the private mode is other agents are aware of this
communication and can infer some beliefs such as these agents are acquainted,
they share a secret or they are friends, which are impossible in private mode.

These threedifferentmodesof communicationaredescribedona technical point
of view in following sections. They are all supported by a communication server.

4 Public Communication

As stated above, the public communication is based on the Internet multi-party
communication where potentially, all agents are able to ”hear” the message. The
agent communication not only contains the sender and the addressees but audi-
tors and overhearers as well. If we want to allow auditors to hear this message,
it is necessary either to ”open” this channel to everybody or to send the mes-
sage to all the agents. The latter approach is too resource-consumptive to be
used, above all if the number of agents is quite high. Chats and forums on the
Internet are using a dedicated ”area” where everybody can read the different
messages as they arrive to the chat server. We follow two different approaches
for our public mode: (1) a forum communication and (2) an environment-based
communication. The difference between the two approaches remain in the way
to handle communication. For instance, it is possible to consider gathering one
or two hundred people in the same piece to discuss, it is more difficult for hun-
dreds or thousands people, without speaking about location management and
how to transmit speech, etc. These problems are solved on the Internet where it
is possible to gather thousands of people without any further effort. We follow
the same idea in agent communication where public communication via the en-
vironment is reserved for small multi-party communication whereas the forum
is used for more important multi-party communication.
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4.1 Forum Communication

Forum communication is used when communication is purely verbal and does
not require to be immersed within an environment. Argumentation and auctions
are examples of communication that can be addressed by a forum. Forums are
equivalent to the ones found on the Internet, that is, a shared zone where one or
several threads of conversation run concurrently. For sake of simplicity, we re-
strict to one thread and several subsequent threads derived from the main thread.
Subsequent threads are used to clarify some points in the current conversation.
Clarifying a message content is an example of subsequent thread since it deserves
the main thread. Forums are created on request of agents for a particular need.
For instance, the agent wants to open an auction to sell an item.

When an agent begins a new dialogue in forum mode, the communication
server creates a forum with one participant and posts the message. Then, the
communication server advertises this forum to other agents. The way of adver-
tising can be done along different modes:

1. The sender identifies an agent role to which the advertisement should be
sent,

2. The sender gives an advertisement to be sent to all the agents,
3. The sender gives no advertisement, the message is sent to all the agents.

The communication server updates as well the list of ongoing forums. It
creates a slot that contains the list of participants and the advertisement if it
exists. This list is used by agents to access it if they do not have received the
advertisement—in the context of open systems or when they were not addressed
by the advertisement. This list only contains the public and the mute commu-
nications. All the messages post on the forum are stored. One of the interest
to store the message is for agents that join during the conversation. It is then
possible for them to find what the current state of the conversation is. They just
have to execute the protocol on the different messages posted. Turn taking is not
restricted and agents can speak freely when they need to. Termination in multi-
party communication is ensured either by the communication server and by the
agents. The communication server checks that some agents are not present in
the communication only to slow it down. If it is the case, it removes them from
the communication. Removing agents is performed on request of agents that
found some agents are opposed to terminate the communication in short time.
Such decision is difficult to define since it is required to consider what slowing
down the communication means. For instance, in a one-to-one negotiation, it
corresponds that agents do not change their proposal and iterate on it infinitely.
Removal decision is ad hoc to the domain of communication.

The main difference with Internet forums is the use of protocols and the
restriction to only one thread of conversation. An example of public communi-
cation via forums is given in Section 7.
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4.2 Environment-Based Communication

The first mode of communication in public communication is the forum mainly
used for verbal conversations where the immersion of agents within environ-
ment is not important. The mode of communication, we present here, makes the
assumption that agents communicate via the environment. Thus, sending a mes-
sage does not correspond to send it to a dedicated communication channel but
propagating in the environment. A similar approach already exists in MANTA
[3] where this time, the message is a pheromone. One reason for agents to choose
this mode of communication is the need to coordinate or to cooperate with other
agents. This mode of communication is driven as well by some specific applica-
tions such as human-lifelike applications or games. For instance, a wargame can
use this approach to coordinate platoons or to help soldiers in danger. An out-
standing example of communication via the environment is the use of MASSIVE
for the battle of Helm’s deep in the Lord of the Rings movie. Attacks are passed
via the environment to allow opponents to react to this attack. They then re-
duce the complexity of agents by leveraging down their perception requirements:
there is no vision process to recognize an opponent and his attack.

Messages are released in the environment with a specific force and a decre-
ment of 1. It means that the force of the message is total at the source location
but decreases by 1 for each cell far from the source. The further the message is
from its source, the weaker it is. An example of message release is given on Fig-
ure 1. Agent agent1 sends a message inform with a force of 4 and a decrement
of 1. Agent agent2 hear the message since it is within earshot but not Agent
agent3 since it is out of earshot.

Contrarily to communication via forums, messages are not stored for new-
coming agents. Moreover, messages are substituted by new ones if earshot of a
new message is on some cells of a previous message. We use as well the direction
of the agent, that is, a message is more easily heard if the speaker watches the
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Fig. 1. Environment-based Communication in Public Mode
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recipient than the speaker has its back to the recipient. The message is written in
the environment along an arc of a circle. The structure of the environment modi-
fies as well the possibility to hear the message. For this particular communication
server, we consider that messages can go through walls by a decrement of 3.

When an agent begins a new dialogue in environment-based mode, the com-
munication server retrieves the force of the message and updates the environment
with this message. That is, it propagates the message within the environment
and decrements the force of the message based on the distance between the
current location and the source as shown on Figure 1. Reading messages for ad-
dressees is performed by perceiving the environment and retrieving the message.
This is only possible if the agent is within the earshot. A timestamp is associated
to messages. When the timestamp is passed, the message is removed from the
environment. The same approach is used for pheromones in MANTA to avoid
considering outdated information [3].

5 Mute Communication

Mute communications are certainly the less frequent mode of communication in
multiagent systems. The aim of this mode of communication is to offer some
privacy to agents during the conversation. It means that other agents outside
the communication are aware of this communication but cannot hear the con-
tent. This mode of communication is frequent in theater when several characters
move away and discuss—usually for a plot. Mute communication receives less
attention for the moment in multiagent communication. Actually, it is similar
to private communication except that other agents are aware of this communi-
cation. However, we do a slight modification in comparison with theater private
conversations since it is not possible to spy on the communication and to disclose
the content. The interest in this mode of communication is to reveal to other
agents that some agents are acquainted. Agents can infer beliefs about this pri-
vate conversation. For instance, in games, it can imply that some relationships
exist between characters and it can affect the way to play.

Two elements have to be taken into account when communicating in mute
mode. Privacy of the communication has to be ensured and agents outside the
communication have to be aware of this communication. The support for mute
communication is a forum only accessible for the participants. It means that the
communication server controls the access to the forum and only agents granted
by the participants can access it. New participants are chosen either by the
leader of the communication—if it exists—or on a vote of all the participants.
If most of the participants agree, new participants can enter the discussion.
The communication server saves a list of all the forums that currently run. It
is straightforward for agents to retrieve the list and know agents involved in
forums.
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6 Private Communication

Our mode of private communications is similar to current one-to-one commu-
nication. It means it is not possible for agents outside the participants of the
communication to be aware of this communication. We adopt the same approach
than for mute communications, that is, the communication server uses a forum
to store the message exchanged during this communication but this time, this
forum does not appear in the list of ongoing forums. The use of this forum is
the one described in Section 4.1.

7 Multi-party Communication Application

Previous sections depict three different modes of communication, respectively
public communication, mute communication and private communication. In this
section, we describe two examples of public communication.

Public mode in multi-party communication can be used for auctions for in-
stance. The current protocol for auctions such as English auction or Dutch auc-
tion waits for a deadline to select the winner. Agents know whether they win or
lose the turn but they do not know which agent wins the turn. As a consequence,
they cannot infer some beliefs about the interest of other agents in the auction.
Moreover, they do not know which agents are attending this auction. Using
public communication via a forum can simplify the protocol and let the auction
closer to human auctions. A modified version of the English auction protocol is
shown on Figure 2. The main differences are in the treatment of proposals and
winner notification. In the usual English auction protocol, each participant can
accept the bid via an inform message [4]. After deadline, the auctioneer informs
bidders whether it accepts the bid or not. In terms of messages, if n participants
are willing to bid, there are 2n messages used whereas in human auctions, there
are only two messages: one from the first bidder and one from the auctioneer.
Thanks to the forum communication, it is possible to reduce the number of mes-
sages to two messages and to increase the quantity of information, participants
can use to infer strategies on other participant. Since the bid is posted on the
forum, other participants are aware of this proposal and know they no longer
propose. A message from the auctioneer is required to inform which agent wins
the turn in case several agents bid at the same moment. Mute mode or private
mode can be used for the final phase of auctions, that is, paying for the item
won.

An illustrative example where public communication via the environment can
be used is the battle of Helm’s deep in the Lord of the Rings-The Two Towers
where orcs and humans are agents and they fight together. Opponents do not
perceive what other agents do but perceive a message sent in the environment
by their direct opponent and react as they want. In this approach, the com-
munication is restricted to informing opponents of what is the attack, but it
is possible to think about using this communication to coordinate fighters and
help fighters in danger. Another classical example in multiagent systems is the
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sd Multi-party English auction

Initiator Participant

private : request-payment

[hammer price > reserved price]

option

public : inform-end-of-auction

public : inform-winner

[no proposal] public : accept
option

{t..t+10}

t = now
public : propose

public : inform-start-of-auction

new call

new call

Fig. 2. English Auction Protocol in the Context of Multi-Party Communication

MANTA project where communication between ants and cocoons is performed
via environment propagation.

8 Comparison with Dignum and Vreeswijk’s Approach

The proposal made in [2] is the closest to ours. In this one, a blackboard system
is used for multi-party dialogues. On the reading of this paper, we can infer
several differences between the two approaches:

1. An unique blackboard system is proposed whereas we consider several fo-
rums, one per conversation. It means that either the system in [2] is more
complex since it is required to extract between several threads of conversa-
tion or agents are restricted to only one conversation at a time,

2. The system is closed in [2]. It is then not possible to add new agents during
the conversation. As a consequence, no policy has to be defined to restrict
the access to a forum. In our approach, the system is open and agents can
enter and leave when they desire to. Moreover, entering a communication is
accepted after the agreement of the participants.
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3. Dignum and Vreeswijk use computational dialectic to direct agent communi-
cation. Moreover, communication is unaddressed. In our approach, messages
are addressed to addressees even if all agents potentially can read them. We
still use protocols to direct communications.

4. Without any reasons—except maybe the termination issue—, agents speak
alternatively and on a fixed number of rounds in [2]. It is a restrictive ap-
proach. There is no fixed number of rounds in our approach since termination
is decided both by the communication server and agents.

5. There is no private communications in [2]. As a consequence, it is not possible
for agents to discuss without noticing other agents.

These two approaches are not contradictory but complementary. It could be
interesting to consider mixing our communication server with the computational
dialectic defended by Dignum and Vreeswijk since our communication server is
not dedicated to a specific way to address the communication.

9 Conclusion

Agent communication is still a one-to-one communication, that is, the commu-
nication is between a speaker and an addressee and auditors and overhearers
are not considered. This has some impact on communication and for instance
in argumentation where it is not easily possible for agents to defend or attack
arguments of other agents if they are unable to hear them, they can only defend
their own arguments. The idea defended in this paper is to offer one-to-many
and many-to-many communication to agents. As a consequence, messages are
addressed to all the agents that can hear them. We propose three modes of
communication: public communication similar to forums on the Internet, mute
communication similar to private conversations but other agents are aware of
these conversations and finally, private communication similar to current one-to-
one communication. Other agents are unaware of these communications. Public
communications are supported by either a forum or by the environment. The
forum allows agents to communicate via a many-to-many communication. Each
agent which is participant in this forum can hear the message and answer if it
wants even if it is not the addressee of the message. The second support—the
environment—is particularly suited for coordination and cooperation. Agents
only communicate with agents close to them and as a consequence, maybe those
that are the most able to help them. An outstanding example is battles in games
where communication via the environment can coordinate platoons.

Multi-party communication generates new issues that have to be solved for
efficient communications. That is, turn-taking, termination and entering com-
munications have now to be considered from a theoretical point of view, for
instance considering how multiple parties affect dialogue games or argumenta-
tion systems. The example of English auction in Section 7 presents a reduction
in the number of messages when using multi-party communication in compari-
son with one-to-one communication. It could be interesting to define what are
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the advantages in terms of number of messages when passing from one-to-one
communication to multi-party communication and how protocols are modified
to answer to multi-party communication. These two topics are in our agenda.
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Abstract. In this paper, we will consider the alignment of heteroge-
neous ontologies in multi agent systems. We will start from the idea that
each individual agent is specialized in solving a particular task and there-
fore requires its own specialized ontology that is, in principle, not under-
standable for other agents. This heterogeneity of ontologies, of course,
poses problems for the communication between agents. In our frame-
work, we assume that the agents share some minimal common ground
which can be used to learn new concepts. We will discuss which con-
cepts of the different ontologies the agents should learn from each other
in order to establish a communication vocabulary that enables optimal
communication.

1 Introduction

The World-Wide Web has enabled people to access a vast amount of information
from distributed sources all over the world. Due to its rapidly increasing size,
and the scattered nature of the information resources available, it is becoming
more and more difficult for humans to find the information they are interested
in. This problem has given rise to research on the enhancement of the current
infrastructure with machine processable semantics. In the future, this would en-
able computer agents to use and understand information on the web, and so
assist humans in performing tasks on the internet.

In [10], for example, a future scenario is described in which a travel-agent
assists a customer in planning a holiday trip to the United States. The agent
not only finds a cheap flight, but also investigates the prices for camper rental,
suggests other transport possibilities, and finds out which licenses are required
for campsites on the way. Basically, it does everything that your travel agency
does for you these days. Before this scenario can be made reality, some important
barriers have to be overcome. One of them is that agents must be able to commu-
nicate with each other. A fundamental problem in communication is caused by
the heterogeneity of the underlying knowledge sources, or more specifically, of the
underlying ontologies ([18]). For instance, a travel-agent may encounter another
agent that offers a “mobile home”. The travel-agent should be able to recognize
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that this offer concerns a concept that he himself would refer to as a “camper”.
However, when the travel-agent encounters an agent offering a “mobile phone”,
it should recognize that this offer will not fulfil its desire to rent a camper.

Over the last decade, some important progress has been made towards the
standardization of agent communication languages (ACL’s), e.g. KQML ([7]),
FIPA ACL ([1]). However, these standards mainly focus on the syntax of mes-
sages and the semantics of performatives. The semantics of the content of a
message is not specified by the ACL standard, but by the ontology which is
used. The content of a message will only be correctly conveyed if the receiving
agent knows the ontology of the sending agent. In an open multi agent system
(MAS), both the situation that all agents share one and the same ontology, and
the situation that every agent knows each other’s ontology are not desirable.
Because every agent is specialized in solving its own particular task, every agent
requires its own specialized ontology. Also, the situation of making every agent
acquainted with every other agent’s ontology will be untenable in an open MAS.

In this paper, we will address the problem of establishing a suitable commu-
nication vocabulary in a formal and abstract way. We will specify a framework
which contains those elements that are relevant for the problem, and those ele-
ments that are necessary in order to make the problem solvable. Every agent has
its own specialized ontology that is, in principle, not understandable for other
agents. To provide a starting point for the agents to understand each other’s
ontologies, we assume that there is a common ground in which each private on-
tology of an agent is rooted. This common ground enables them to uncover the
relations of foreign concepts with their private concepts. In this paper, we will
construe this common ground as a ground ontology. This implies that all the
terms used in a private ontology can be expressed as a complex of basic terms
defined in this ground ontology. We will also introduce the notion of a commu-
nication vocabulary. Although agents are unable to communicate their private
concepts directly, they can use this communication vocabulary to express private
concepts in an efficient manner without using the complex and, for communica-
tion purposes, inefficient definitions of the ground ontology.

We will focus on the desirable properties of the communication vocabulary
and specify which concepts are most suited to become part of this vocabulary.
On the one hand, the vocabulary should contain enough concepts to enable the
agents to express all things with sufficient accuracy. On the other hand, it should
contain as few concepts as necessary in order not to burden the agents with su-
perfluous concepts.

In the next section we will discuss the backgrounds of the problem and review
related work. In section 3 we will give the formal definitions of the framework,
and discuss the place of the ground ontology and the communication vocab-
ularies in the system. In section 4 we will discuss the various possibilities for
the communication vocabulary. Section 5 presents our conclusions and indicates
steps for further research.
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2 Background and Related Work

Within an agent’s knowledge representation, a distinction can be drawn between
the description of intensional knowledge, concerning general knowledge about a
problem domain, and the description of extensional knowledge, concerning a
particular problem [4]. The former will be referred to as the agent’s ontology,
and the latter as the agent’s assertional knowledge base. An agent’s ontology is
usually thought to be changeless, whereas an agent’s assertional knowledge base
is subject to change, as it represents the current state of the world. The ontol-
ogy describes the agent’s commitment on how to view the world. The assertional
knowledge base is described in terms of the concepts defined in the ontology. As
a consequence, the things that can be expressed well about the current state of
the world are heavily dependent on the concepts defined in the ontology.

One of the strong points of a MAS is that it enables one to partition the
problem space of a complex system into smaller problems which can be solved
by individual agents ([13]). This means that each agent requires its own special-
ized ontology which is tailored to its own specific task. Therefore, the problem of
integrating heterogeneous ontologies is not just a matter of reaching agreement
among system developers to use one common standard. In fact, the presence of
heterogeneous ontologies is inherent to the task division in multi agent systems.

However, disparities in the agents’ conceptualizations pose problems for the
communication between agents. One of the characteristics commonly ascribed
to agents is that of exhibiting social behavior. In the context of the distinction
between ontological and assertional knowledge, the social nature of agents will
be apparent in the communication of assertional knowledge. As has been argued
above, an agent’s ontology represents its changeless knowledge about a problem
domain. Therefore, it is useless for one agent to communicate its ontological
knowledge to another agent, as the other agent will not be willing to change
this type of knowledge anyway. However, it does make sense for agents to com-
municate assertional knowledge, as this characterizes itself by being subject to
change, representing the current state of the world.

Because assertional knowledge is defined in terms of the concepts introduced
in the ontology, communicating assertions becomes problematic when heteroge-
neous ontologies are involved. There is no guarantee that, when one agent sends
an assertion in terms of its private ontology to another agent, the meaning of
this assertion is also conveyed to the other agent. The receiving agent may be
unfamiliar with the terms used in the assertion, or, even worse, may assign dif-
ferent meanings to these terms.

In the knowledge representation community, the problem of integrating het-
erogeneous ontologies has been given a lot of attention lately. Several tools have
been developed in order to merge and align ontologies (e.g. Chimaera [11],
Prompt [12]). However, these tools require human intervention to ensure cor-
rect mappings. In open multi agent systems, inter-ontology mappings have to be
established on such a large scale that this prerequisite is unacceptable.

The foundation for intelligent physical agents (FIPA) has recognized the
problems for agent communication caused by heterogeneous ontologies. In [2]
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this problem is given attention by specifying the communicative interface to
a service that assists agents in aligning their ontologies. However, the internal
implementation of a service that performs this task (a task which they char-
acterized as very difficult, and not always possible to realize) is left to system
developers. We agree with the observation that ontology alignment is very dif-
ficult, yet indispensable for MAS’s. Therefore, we believe that a formal and
theoretical underpinning is essential at this point in order to identify the rele-
vant components and investigate their nature.

Only recently, a few approaches have been proposed which address the prob-
lem of aligning heterogeneous ontologies in MAS’s. In [19], an approach is de-
scribed in which the agents use machine learning techniques to learn the meaning
of each others concepts. The initial clues on the meaning of foreign concepts are
provided by the instances of those concepts. This resembles the approach taken
in [17], where overlaps in instance data are the main driving force behind the
characterization of foreign concepts in terms of upper- and lower bounds of pri-
vate concepts. In [5], the authors describe how agents can autonomously derive
transformation functions (i.e. glue code) to translate between heterogeneous on-
tologies. In this approach, it is assumed that a common underlying theory exists
to which the private ontologies of the agents are linked.

All these approaches have in common that they aim at providing the agents
with a set of shared concepts in which they can express their private knowledge
(or similarly, with some shared understanding of each others concepts). In our
framework, this set of shared concepts is present in the communication vocabu-
lary. However, whereas the approaches described above focus on how the agents
are to derive the communication vocabulary, in this paper we focus on its struc-
ture and desirable properties.

Every approach that deals with fully automatic alignment of ontologies pre-
supposes some form of common ground to find inter-ontology mappings. In some
cases this common ground is provided by shared instances (as in [19], [17]), in
other cases there exist some shared ground terms (as in [5], [6]), and in yet other
cases there are pointable objects which are observable by both agents (as in
[15]). In this paper we have chosen for a ground ontology as common ground
which provides a set of shared ground terms that the agents use to define their
private concepts. Since the main focus of this paper is on the communication
vocabulary and not on the ground ontology, our results are still relevant when
the agents have a different kind of common ground at their disposal.

3 General Framework

3.1 Representation of Ontologies

Ontologies may take a variety of forms which differ in representation format and
expressivity ([8]) (e.g. Ontolingua ([9]), OWL ([3]). We will abstract away from
representational differences by adopting one syntax which is used by all agents.
Furthermore, because the inheritance relation almost without exception lies at
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the core of an ontology, we will restrict ourselves to taxonomic structures with
disjointness relations.

Ontologies will be formalized using a language L, which is equal to the de-
scription logic language ALC without roles. The semantics of L is based on
interpretations of the form I = (ΔI , ·I), where ΔI is the domain and ·I is the
interpretation function that maps every concept to a subset of ΔI and every in-
dividual to an element of ΔI . Given a set of atomic concepts A, complex concepts
can be formed using concept constructors. The following constructs are available:

- A, where AI ⊆ ΔI - ¬C, where (¬C)I = ΔI − CI

- �, where �I = ΔI - C �D, where (C �D)I = CI ∩DI

- ⊥, where ⊥I = ∅ - C �D, where (C �D)I = CI ∪DI

The notation L(C) is used to denote the set of complex concepts in L over the
set of atomic concepts C. Statements can be used to define one of the following:

– subsumption: C � D ⇔ CI ⊆ DI

– equality: C
.= D ⇔ CI = DI

– membership: C(a) ⇔ aI ∈ CI

We say that I is a model of a set of statements Γ , if I satisfies every statement
in Γ . We say that Γ entails a statement γ, i.e. Γ |= γ, if and only if every model
of Γ also satisfies γ.

An ontology O is defined as a tuple 〈T, C〉. C is the set of atomic concepts
and T is a TBox consisting of a set of statements of the form: A

.= C or A � C,
where A ∈ C, and C ∈ L(C). It is assumed that the definitions in T are unique
(i.e. no concept occurs more than once at the right hand side of some axiom),
and acyclic ([4],p.52).

Among atomic concepts, a distinction can be drawn between primitive con-
cepts and defined concepts. Primitive concepts are those that only occur at the
right hand sides of the TBox statements, whereas defined concepts occur some-
where on the left hand side of a TBox statement. Since we assume that the
TBox definitions are unique and acyclic, the TBox is unfoldable ([4],p.310). This
means that every defined concept can eventually be written in terms of primi-
tive concepts. The unfolding of concept C with respect to TBox T is written as
[C]T and can be obtained by recursively substituting the defined concepts in the
formula by their definitions in T .

3.2 Ontologies in Multi Agent Systems

A multi agents system is defined as: A = {x1..xn}. An agent xi is defined as
a tuple with one component containing the knowledge base KBi = 〈Oi, Ai〉,
where Oi = 〈Ti, Ci〉 is the ontology, and Ai is the set of membership statements,
constituting an ABox. A membership statement takes the form C(a), where
C ∈ C, a ∈ Δ. C(a) holds iff aI ∈ CI .

In our framework, the communication vocabulary is also formalized as an
ontology. For the agents to adapt to a communication vocabulary, they must be
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able to uncover the relations of the concepts in the communication vocabulary
with the concepts in their private ontologies. For that reason we have introduced
the ground ontology which is shared by the entire MAS and in which every
private concept of each individual agent can eventually be defined. Formally,
this implies that every primitive concept in each agent’s ontology is present in
this ground ontology. Even with a small set of ground concepts (i.e. concepts in
the ground ontology), an enormous quantity of complex concepts can be formed.
This enables every agent to adopt its own specialized world view, while keeping
the possibilities for interoperability open. The following definition formalizes the
notion of grounding an ontology.

Definition 1. Grounding Ontologies
An ontology Oi = 〈Ti, Ci〉 is grounded in the ground ontology Og = 〈Tg, Cg〉 if for
all C ∈ Ci holds that [C]Ti ∈ L(Cg)

We assume that for all agents xi it holds that their private ontology Oi is
grounded in Og. This assumption to facilitate the integration of heterogeneous
knowledge sources, is similar to that proposed by the SENSUS methodology
([16]). The main characteristic of this methodology is that one large ontology
(with more than 50,000 concepts) is used as a skeletal foundation for the domain
specific ontologies. As all ontologies built using this methodology share a com-
mon underlying structure, merging and aligning them will become much easier.

Example 1. Consider the ontology of agent x1 (the Camper rental Agent),
O1 = 〈T1, C1〉, which is grounded in the ground ontology presented in figure 1.

T1 = { OneBedCamper .= Vehicle � Shelter � WeightsMoreThan1Ton �
¬WeightsMoreThan2Ton � ¬ ElectronicEquipment � YellowThing , ForestCam-
per .= Vehicle � Shelter � WeightsMoreThan2Ton � ¬ ElectronicEquipment �
GreenThing , HappyHolidayCamper .= Vehicle � Shelter �
WeightsMoreThan2Ton � ¬ ElectronicEquipment � YellowThing }
C1 = { OneBedCamper, ForestCamper, HappyHolidayCamper }
The ontology of the camper rental agent characterizes its personal view on the
world, which consists of campers. This ontology enables agent x1 to store camper
related knowledge efficiently. However, it leaves limited possibility to store other
kinds of knowledge, as it has been tailored to the camper domain. The shared
ground assumption becomes apparent in the definitions of its private concepts
of C1. The concepts used in these definitions all belong to the concepts of the
ground ontology, namely Cg.

3.3 Communication Vocabularies

The concept names used in an agent’s private ontology are not understandable
to other agents. However, their definitions in terms of ground concepts are. An
obvious solution to the communication problem would be to use the definition
of a private concept in communication, instead of the private concept itself.
However, this is not the preferred approach, as concept definitions are generally
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Tg = { TangibleThing  ¬ IntangibleThing ,
YellowThing  TangibleThing ,
GreenThing  TangibleThing � ¬ YellowThing,
WeightsMoreThan1Kg  TangibleThing,
WeightsMoreThan1Ton  WeightsMoreThan1Kg ,
WeightsMoreThan2Ton  WeightsMoreThan1Ton ,
Artifact  TangibleThing � ManMade ,
Shelter  TangibleThing,
ElectronicEquipment  Artifact � ¬ Shelter,
CommunicationDevice  Artifact,
Vehicle  Artifact � ¬ CommunicationDevice,
Building  Artifact � ¬ ElectronicEquipment � ¬ CommunicationDevice }
Cg = {TangibleThing, IntangibleThing, YellowThing, GreenThing,
WeightsMoreThan1Kg, WeightsMoreThan1Ton, WeightsMoreThan2Ton, Artifact,
ManMade, Shelter, ElectronicEquipment, CommunicationDevice, Vehicle, Building}

Fig. 1. Example Ground Ontology

very large. Communicating directly in terms of ground concepts would lead
to long messages, resulting in a high bandwidth load, and large amounts of
data to be processed. The rationale behind introducing a defined concept in
an ontology, is to enable the agent to store information using only one atomic
concept instead of storing it using a complex structure of primitive concepts.
Likewise, the rationale behind adopting a communication vocabulary, is to enable
the agent to communicate a complex concept using only one defined concept,
instead of communicating it using a complex structure of primitive concepts.

From this perspective, the intuition behind the communication vocabulary
links up with a common technique from information theory, where frequently
used symbols are encoded in a smaller number of bits than the rarely used
symbols, e.g. as in Morse codes, or Huffman codes. These codes enable one to
reduce the average size of messages sent over some communication channel.

Fig. 2. General framework
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To enable agents to uncover the relations with their private ontologies, the
communication vocabulary is grounded in the ground ontology. The situation is
illustrated in figure 2. Note that the set of concepts of agent xi (i.e. Ci) denotes
the set of concepts in which its assertional knowledge is expressed. There may
be (ground) concept names that occur in Ti that are not member of Ci. The set
of concepts in the ground ontology (i.e. Cg) is used to refer to all concepts that
occur in Tg.

4 Properties of Communication Vocabularies

An optimal communication vocabulary is defined as the smallest set of concepts
to be used in communication, while remaining sufficiently accurate. In this sec-
tion we will formalize this notion.

4.1 Concept Equivalence Relative to an Ontology

When an agent is committed to a certain ontology, it has decided to view the
world only in terms of those concepts defined in its ontology. The agent can
store only those things that are expressible using the concepts in its ontology
and the concept constructors in the language L. Foreign concepts can therefore
be characterized solely in terms of their relations with the concepts in the agent’s
ontology. Suppose the following membership statement is sent: C(a), where C is
a concept in the ground ontology. The only thing that matters to the receiving
agent is what implications this statement carries concerning membership of the
concepts in its private ontology. Such an implication w.r.t. a concept D in its
private ontology, can be one of the following:

1. It can be derived that a is also member D, i.e. D(a)
2. It can be derived that a is not member of D, i.e. ¬D(a)
3. Neither 1, nor 2 holds, i.e. D(a) cannot be proven, and ¬D(a) cannot be

proven.

A derivation of type 1 can be made if and only if C � D holds (specific-to-general
reasoning). A derivation of type 2 can be made if and only if C � ¬D (reasoning
with disjointness). The agent remains ignorant about D(a) and ¬D(a) if neither
C � D, nor C � ¬D can be proven.

Elaborating on these ideas, two foreign concepts can be regarded equivalent
w.r.t. an ontology if they stand in the same relation to the concepts in the
ontology. This can be formalized as follows:

Definition 2. Concept Equivalence Relative to an Ontology
Given a ground ontology Og = 〈Tg, Cg〉, and an ontology O = 〈T, C〉 which
is grounded in Og. The concepts C, D ∈ L(Cg) are equivalent relative to the
ontology O, written as C ≡O D iff

– For all E ∈ L(C) : (Tg |= C � [E]T ) ⇔ (Tg |= D � [E]T )
– For all E ∈ L(C) : (Tg |= C � ¬[E]T ) ⇔ (Tg |= D � ¬[E]T )
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Example 2. Consider the ontology of agent x2: the PhonedealerAgent, O2 =
〈T2, C2〉, where:

T2 = { KermitPhone .= ElectronicEquipment � CommunicationDevice �
¬WeightsMoreThan1Kg � GreenThing , TweetyPhone .= ElectronicEquipment
� CommunicationDevice � ¬ WeightsMoreThan1Kg � YellowThing }
C2 = { KermitPhone, TweetyPhone }
Relative to the ontology of agent x1, the following concept equations, and non-
equations, hold:

1. [KermitPhone]T2 ≡O1 CommunicationDevice � ¬ WeightsMoreThan1Kg
2. [KermitPhone]T2 ≡O1 CommunicationDevice
3. [KermitPhone]T2 ≡O1 ¬ Vehicle
4. [KermitPhone]T2 �≡O1 Artifact

A graphical representation of these four equations is shown in the four squares
of figure 3. These figures can be interpreted as Venn diagrams, where the ovals
represent concepts. The three black ovals at the left represent the three concepts
in the ontology of agent x1. The striped ovals represent concepts that belong to
the ground ontology. The little vertically striped oval at the right represents the
concept [KermitPhone]T2 . The horizontally striped area that varies from figure
to figure, represents: (CommunicationDevice � ¬WeightsMoreThan1Kg), Com-
municationDevice, ¬ Vehicle and Artifact respectively.

The first square in Figure 3 shows that the concept KermitPhone is equiv-
alent to the concept CommunicationDevice � ¬ WeightsMoreThan1Kg relative
to the ontology of x1. That is because they are both disjoint with all concepts in
the ontology of x1. The same holds for equations 2 and 3. Equation 4 however,
is different. The vertically striped oval is disjoint with all black ovals, whereas
the horizontally striped oval overlaps them. It does make a difference to agent
x1 whether an individual belongs to the concept KermitPhone or to the concept
Artifact. From membership of KermitPhone, the camper rental agent can derive
that this individual is not a member of any of its private concepts. From mem-
bership of Artifact, the agent remains ignorant about membership of its private
concepts.

Fig. 3. Relative concept equations
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4.2 Common Communication Vocabularies

Communication vocabularies (cv’s) are specified for a communication pair of the
form cp = 〈xi, xj〉 ∈ A×A , where xi is the sending agent and xj is the receiving
agent. The cv is specified as an ontology Ocv which is shared by both agents.
The sending agent uses the cv by making sound translations of messages stated
in private concepts (∈ L(Ci)) to messages stated in shared concepts (∈ L(Ccv)).
To preserve soundness, an agent translates a private concept to a shared concept
which is equivalent to or more general than the original concept. In the extreme
case, an agent translates a private concept C to the shared concept �. Although
such a translation will definitely be sound, an assertion of the form �(a) does
not contain any information about the individual a for the receiving agent. The
price of translating knowledge in more general terms is information loss ([14]).
Since an optimal communication vocabulary should contain concepts which the
agents can use to be sufficiently accurate, the shared concepts should not be too
general. The intuition behind the following definition is that the sending agent
should be allowed to translate its private assertion into a more general concept
in the communication vocabulary, as long as the translated concept remains
equivalent with the original concept relative to the receiving agent’s ontology.

Definition 3. Lossless Communication Vocabulary
Given a ground ontology Og, the communication vocabulary Ocv is lossless for
the communication pair 〈xi, xj〉 iff for all C ∈ L(Ci), there exists D ∈ L(Ccv),
s.t.

- Tg |= [C]Ti
� [D]Tcv

- [C]Ti
≡Oj

[D]Tcv
holds, given Og

Example 3. The following are examples of lossless cv’s for the phone dealer
agent to the camper rental agent, i.e. the communication pair 〈x2, x1〉:
1. Ccv = {KermitPhone, TweetyPhone}

Tcv = T2
2. Ccv = {LightCommDevice}

Tcv = {LightCommDevice .= CommunicationDevice �
¬ WeightsMoreThan1Kg}

3. Ccv = {Conveyance}
Tcv = {Conveyance .= Vehicle}

The first cv is lossless because agent x2 does not have to translate its private
knowledge in the shared vocabulary. Using the second cv, x2 can translate all its
private concepts (KermitPhone and TweetyPhone) to LightCommDevice, which
is subjectively equivalent with the original concepts w.r.t. the ontology of agent
x1. The third cv enables x2 to translate its private concepts into ¬ Conveyance,
providing for a lossless cv. The following is not a lossless cv:

Ccv = {ManMadeObject}
Tcv = {ManMadeObject .= Artifact}
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This is because ManMadeObject is not subjectively equivalent with Kermit-
Phone, w.r.t. agent x1.

When a communication vocabulary is used by more communication pairs,
we speak of a common communication vocabulary. It is lossless if it is a lossless
communication vocabulary for each communication pair.

Definition 4. Lossless Common Communication Vocabulary
A common communication vocabulary Ocv is lossless for the set of communica-
tion pairs CP ⊆ (A×A) iff Ocv is a lossless communication vocabulary for all
elements of CP .

Example 4. The first three cv’s from example 3 are lossless common commu-
nication vocabularies for {〈x2, x1〉, 〈x1, x2〉}.

As has been argued before, the number of non-private concepts an agent must
learn for communication purposes should be kept as small as possible. Therefore,
besides being lossless, an optimal common communication vocabulary is minimal
in size.

Definition 5. Optimal Common Communication Vocabulary
A common communication vocabulary Ocv = 〈T, C〉 is optimal for the set of
communication pairs CP ⊆ (A×A) iff

– Ocv is a lossless common communication vocabulary for CP
– There is no lossless common communication vocabulary for CP: O′

cv =
〈T ′, C′〉, such that #C′ < #C

The notation #C is used to denote the number of elements in set C.
Example 5. The second and the third cv from example 3 are optimal common
communication vocabularies for {〈x2, x1〉, 〈x1, x2〉}. The first cv is not, because
it contains superfluously many concepts. Consider another example: the ontology
of the travel-agent, i.e. agent x3 is described as:

T3 = {SoloCamper .= Vehicle � Shelter � WeightsMoreThan1Ton
� ¬WeightsMoreThan2Ton � ¬ ElectronicEquipment, FamilyCamper .= Vehicle
� Shelter �WeightsMoreThan2Ton � ¬ ElectronicEquipment, Hotel .= Building
� ¬ Vehicle � Shelter � WeightsMoreThan2Ton
C3 = { SoloCamper, FamilyCamper, Hotel }
The following is an optimal common communication vocabulary for the commu-
nication pairs {〈xi, xj〉|i, j ∈ {1..3} ∧ i �= j}:
Ccv = {LightCommDevice, SoloCamper, FamilyCamper}
Tcv ={ LightCommDevice .= CommunicationDevice � ¬ WeightsMoreThan1Kg,
SoloCamper .= Vehicle � Shelter � WeightsMoreThan1Ton
� ¬WeightsMoreThan2Ton � ¬ ElectronicEquipment, FamilyCamper .= Vehicle
� Shelter � WeightsMoreThan2Ton � ¬ ElectronicEquipment }
The concept LightCommDevice is required for the communication between the
Phone dealer agent with the other two agents. The distinction between tele-
phones with different colors is not present in the cv, as it is irrelevant to the two
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other agents. Likewise, the camper rental agent (x1) has specified its campers at
a finer granularity than the travel-agent (x3). The communication vocabulary
only provides for concepts in which distinctions are made that are relevant to
both x1 and x3.

4.3 Distributed Communication Vocabulary

As opposed to a common communication vocabulary, when distributed cv’s are
used, different cv’s may be assigned to different communication pairs. As will
become apparent, distributed cv’s may lead to a smaller amount of shared con-
cepts that the individual agents will have to adopt. Cv’s are distributed using a
distribution function, defined as follows:

Definition 6. Communication Vocabulary Distribution Function
A communication vocabulary distribution function Ocv for the set of communi-
cation pairs CP ⊆ (A×A) is defined as a function that assigns a communication
vocabulary to every element cp ∈ CP .

The lossless property can be formulated for cv distribution functions as follows:

Definition 7. Lossless cv Distribution Function
The cv distribution function Ocv is lossless for the set of communication pairs
CP iff for all cp ∈ CP : Ocv(cp) is a lossless communication vocabulary for cp.

An agent xi must know all communication vocabularies which are assigned to the
communication couples of the form 〈xi, xj〉 or 〈xj , xi〉 (where xj is an arbitrary
agent ∈ A). Therefore it is useful to define the operator � which collects all
communication pairs in which agent xi is involved.

Definition 8. Projection
Let CP ⊆ (A×A) be a set of communication pairs, then the projection of CP to
the agent xi is defined by CP � xi = {cp|cp ∈ CP ∧∃xj ∈ A(cp = 〈xi, xj〉 ∨ cp =
〈xj , xi〉)}
The costs for an agent to adopt a cv distribution function is defined as the total
number of concepts from the cv’s it has to know to adopt it.

Definition 9. Costs
Given a cv distribution function Ocv for CP .
costsxi(Ocv) = #(

⋃
cp∈(CP �xi)Ocv(cp))

The optimal cv distribution function is both lossless and minimizes the total
costs that is involved to adopt it.

Definition 10. Optimal cv Distribution Function
The cv distribution function Ocv is optimal for the set of communication pairs
CP iff

– Ocv is a lossless cv distribution function.
– There is no lossless cv distribution function O′

cv such that:∑
xi∈A costsxi

(O′
cv) <

∑
xi∈A costsxi

(Ocv)
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Fig. 4. cv distribution function of example 6

Note that the optimal common cv from definition 5 can be seen as a special case
of an optimal cv distribution function, namely one that maps every communi-
cation pair to the same communication vocabulary. Therefore, the total costs
for the agents to adopt an optimal cv distribution function will never be larger
than the costs to adopt an optimal common cv. However, in many cases the
total costs to adopt a cv distribution function will be smaller, as will become
apparent in the following example.

Example 6. Suppose another phone dealer agent (x4) joins the community.
The ontology of x4 is:

T4 = { GreenPhone .= ElectronicEquipment � CommunicationDevice
� ¬WeightsMoreThan1Kg � GreenThing , YellowPhone .= ElectronicEquipment
� CommunicationDevice � ¬ WeightsMoreThan1Kg � YellowThing }
C4 = { GreenPhone, YellowPhone }

Now, consider the following optimal cv distribution function for {〈xi, xj〉|i, j ∈
{1..4} ∧ i �= j}. The distribution of the cv’s over the communication pairs is il-
lustrated by figure 4. The content of the cv’s is as follows:

Ccv1 = {Phone}
Tcv1 ={ Phone .= CommunicationDevice � ¬ WeightsMoreThan1Kg }
Ccv2 = {FamilyCamper, OnePersonCamper}
Tcv2 ={ FamilyCamper .= Vehicle � Shelter �WeightsMoreThan2Ton � ¬ Elec-
tronicEquipment, OnePersonCamper .= Vehicle � Shelter �
WeightsMoreThan1Ton � ¬ WeightsMoreThan2Ton � ¬ ElectronicEquipment}
Ccv3 = {GreenPhone, YellowPhone}
Tcv3 = { GreenPhone .= ElectronicEquipment � CommunicationDevice � ¬
WeightsMoreThan1Kg � GreenThing , YellowPhone .= ElectronicEquipment �
CommunicationDevice � ¬ WeightsMoreThan1Kg � YellowThing }
This cv distribution function requires agents x1 to x4 to learn the following
concepts:

1: {Phone, FamilyCamper, OnePersonCamper}
2: {Phone, GreenPhone, YellowPhone}



Optimal Communication Vocabularies and Heterogeneous Ontologies 89

3: {Phone, FamilyCamper, OnePersonCamper}
4: {Phone, GreenPhone, YellowPhone}

Note that an optimal common cv would consist of {FamilyCamper, OnePerson-
Camper, GreenPhone, YellowPhone}. A common cv would require all agents to
adopt four concepts, whereas the use of distributed cv’s requires them to adopt
only three concepts. This benefit occurs when several groups of agents with dif-
ferent focus areas are present within the MAS. In MAS’s consisting of many
heterogeneous agents, this benefit may be considerably large. Another advan-
tage of a distributed cv is that it allows local adjustments of the cv when new
agents join the MAS, whereas common cv’s always require every agent in the
MAS to adjust its cv.

5 Conclusion and Future Work

In this paper we have shown how to investigate and characterize communication
vocabularies in a heterogeneous multi agent system from an objective stance. To
ensure that the cv enables the agents to communicate with sufficient accuracy,
the ontologies of both the sending and receiving agent are relevant. This idea
is manifest in the notion of a lossless cv. To minimize the number of concepts
in the cv, all communication pairs have to be taken into account. This idea is
manifest in the notion of an optimal communication vocabulary. Furthermore,
we have presented the notion of a distributed communication vocabulary and
discussed its benefits over a common cv.

This analysis can be regarded as a starting point to investigate how agents
can autonomously establish appropriate communication vocabularies. In this pa-
per we have discussed what we think should qualify as appropriate. We intend
to continue this line of work by developing dialogue strategies which the agents
can employ to establish an optimal common cv, or an optimal cv distribution
function. By specifying which concepts are important to be shared within the
MAS, agents can decide which concepts they should adopt in their communica-
tion vocabularies. Because the criteria are dependent on the ontologies of both
agents, they need to be engaged in a dialogue.

Furthermore, we intend consider some extensions of our framework, for exam-
ple, by enriching the ontology language with more description logic constructs.
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Abstract. The ability to express temporal conditions, like for example
deadlines, is extremely important in agent applications. Nevertheless,
communication standards like FIPA ACL do not outline a uniform way
to specify such conditions in Content Language expressions. In this pa-
per we extend a CTL*-like temporal language with two very expressive
interval operators, and integrate it with a FIPA-compatible representa-
tion of dates. We then show, by a number of selected examples, that the
resulting language allows agents to express a rich assortment of temporal
constraints in a very natural way.

1 Introduction

The ability to express temporal conditions, like for example deadlines, is ex-
tremely important in agent applications. Nevertheless, communication standards
like FIPA ACL do not outline a uniform way to specify such conditions in Con-
tent Language expressions. In fact, the only relevant reference to time in FIPA’s
recommendations is given as part of FIPA SL Content Language Specification
[5], which imports the ISO standard for absolute and relative dates. However,
nothing is said on how dates can be combined into complex temporal constraints
for SL expressions.

A language for the specification of temporal conditions should be both general
and natural. By “general” we mean that all usual kinds of temporal constraints
should be expressible, for example:

– absolute and relative deadlines: “the payment is due before the end of May
2004”, “the payment is due within 30 days from the time of delivery;”

– absolute and relative intervals: “the auction will be open from May 1, 2004
to May 6, 2004;” “the auction will be open for 24 hours;” “tomorrow the
auction will be opened;”

– periodical multi-intervals: “the auction will be open every day from 8:00 to
18:00.”

Besides being general, a temporal language should allow one to express temporal
conditions in a way that is natural for humans to write and to understand. Some

R.M. van Eijk et al. (Eds.): AC 2004, LNAI 3396, pp. 91–105, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



92 M. Verdicchio and M. Colombetti

of these problems have already been tackled in the literature (see for example
[2, 11]). However, in our opinion not all issues of interest for agent communica-
tion languages have been dealt with in details. Some extensively studied temporal
languages, like CTL* [4], are very general, but they are not at all natural. In
particular, such languages do not have primitive operators to specify time inter-
vals, which appear to be a very natural means to express temporal constraints.
Moreover, a temporal language should include a human-like dating system, fol-
lowing the Gregorian calendar and allowing for both absolute and relative dates
(for a through analysis of the Gregorian calendar see [12]).

In this paper we propose a temporal language that appears to meet the
previous requirements. To reach our goal we extend a CTL*-like temporal lan-
guage with two very expressive interval operators, and integrates it with a
FIPA-compatible representation of dates. We then show, by a number of selected
examples, that the resulting language allows agents to express a rich assortment
of temporal conditions in a natural way.

The paper is structured as follows. In Section 2 we specify our version of
a CTL*-like temporal language. In Section 3 we define two interval operators,
that allows one to use arbitrary logical expressions to define the boundaries of
intervals. In Section 4 we introduce Gregorian dates and discuss a number of
possible dating systems. In Section 5 we show how dates can be used in the
context of interval operators and give a number of significant examples. Finally,
in Section 6 we give our concluding remarks.

2 The Basic Temporal Language

This section provides new definitions which extend the temporal logic that we
have begun to illustrate in [19], called CTL±.

Our starting point is CTL±, a temporal language close to CTL*, which is a
powerful logic of branching time used to analyze and prove properties of compu-
tational systems. CTL* includes only future-directed temporal operators, and it
has been proved in [7] and [9] that adding past-tense operators does not increase
the logic’s expressiveness. However, as stated in [10] and [14], and proved in [16],
some properties of computational systems can be expressed in a far more suc-
cinct way if their logical model includes also operators that deal with the past.
Thus, we extend CTL* with past-directed operators. In the literature, CTL*
with past tense operators is sometimes referred to as PCTL* [15], but as the
‘P’ in the name of temporal logics often stands for ‘propositional’ [3], we prefer
to call our language CTL±, relying on the idea that the ‘+’ symbol represents
the future and the ‘−’ symbol represents the past. In CTL±, time is assumed
to be discrete, with no start or end point, and branching only in the future. In
the literature we can find temporal logic proposals that involve branching also
in the past [17, 8], but we prefer to rely on the idea of “historical necessity” [18],
according to which agents have no possibility of changing the past, so that they
are enabled to reason about alternatives or indeterminacy only with respect to
the future.
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The formal language of CTL± is the smallest set L such that:

A ⊆ L, where A is a suitable set of atomic formulae;
¬L ⊆ L, (L ∧ L) ⊆ L;
NextL ⊆ L, PrecL ⊆ L, (L Until◦ L) ⊆ L, (L Since◦ L) ⊆ L;
CertL ⊆ L.

The symbols ¬ and ∧ come from classical propositional logic, and the intuitive
meaning of the temporal operators is as follows: Next means at the next instant
(in the future); Prec means at the previous instant (in the past); Until◦ means
until (in the future); Since◦ means since (in the past). Cert is a path quantifier,
which means “certainly”, that is, “on every path”.

Let us quickly define the formal semantics of CTL±. Let S be a set of states.
A CTL± frame F on S is an infinite tree-like structure on S, in which every
state has exactly one predecessor and at least one successor, so that there is at
most one walk between any pair of states. When state s is the predecessor of
state s′ we write sRs′.

A path in frame F is an infinite sequence p = 〈p0,...,pn,...〉 of states, such
that for every state pn in the sequence, state pn+1 is one of its successors in the
frame. p0 is called the starting point of path p. The subsequence of p starting
from state pn is itself a path, and it is denoted by pn. The set of all paths that
have state s as starting point are denoted by Paths(s).

A CTL± model is a pair M = 〈F ,v〉, where F is a CTL± frame and v is an
evaluation function that assigns to every atomic formula in A a truth value for
every state in S.

We now have all the necessary elements to define the truth conditions for a
formula of CTL± in model M on path p:

M, p |= φ, where φ is an atomic formula, iff v(φ, p0) = 1;
M, p |= ¬φ iff not M, p |= φ;
M, p |= (φ ∧ ψ) iff M, p |= φ and M, p |= ψ;
M, p |= Next φ iff M, p1 |= φ;
M, p |= Prec φ iff for some path q, q1 = p and M, q |= φ;
M, p |= (φ Until◦ ψ) iff for some n, M, pn |= ψ and for all m such that

0 ≤ m < n, M, pm |= φ;
M, p |= (φ Since◦ ψ) iff for some path q and for some n,

qn = p and M, q |= ψ and for all m such that
0 ≤ m < n, M, qm |= φ;

M, p |= Cert φ iff for all q ∈ Paths(p0), M, q |= φ.

We have illustrated the truth conditions for propositional logic, but if we need to
deal with first order logic, the introduction of the usual definitions for variable
quantification is straightforward. Please note that the names of the temporal op-
erators have been changed with respect to [19] in order to increase the readability
of formulae.

Taking the temporal operators Next, Prec, Until◦, and Since◦ as primitives,
we introduce the following operators:
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SomFut sometimes in the future SomFut φ =def true Until◦ φ;
SomPast sometimes in the past SomPast φ =def true Since◦ φ;
AlwFut always in the future AlwFut φ =def ¬ SomFut ¬φ;
AlwPast always in the past AlwPast φ =def ¬ SomPast ¬φ.

Moreover, we can define a “weak until” and a “weak since” temporal operator,
as follows:

φ WeakUntil◦ ψ =def AlwFut φ ∨ φ Until◦ ψ,
φ WeakSince◦ ψ =def AlwPast φ ∨ φ Since◦ ψ.

In the literature, there is usually a distinction between state formulae and
path formulae in CTL*. A state formula is such that to establish its truth value
we need to take into account only the state in which such formula is evaluated,
while the truth conditions of a path formula require that we specify a path
upon which the truth value of that formula is checked. For instance, an atomic
formula φ is a state formula, because we just need to check the value of the
evaluation function in the relevant state. Instead, SomFut φ, which intuitively
means “sometime in the future φ will be the case”, is a path formula, as we need
to specify the path upon which its truth value is evaluated, that is, the possible
future course of events that the modelled system may go through. Such distinc-
tion obviously has repercussions on the definition of the semantics of CTL*, in
which the |= symbol is inductively defined in different ways for state and path
formulae, respectively [3]. As our semantics of CTL± kicks off from a definition
that takes into account both a path and a state, which is the path’s starting
point, we do not need to draw any distinction, and the truth conditions of all
formulae can rely on a single definition of |=.

It should also be noted that, as we are aiming at modelling the content
language of an ACL, even if the logical framework relies on a tree-like structure
with branches in the future, the agents that use such a language need not take
branching into account. To understand this point, consider an agent making a
statement concerning the future, like for example “the payment will be completed
within tomorrow.” What the agent actually means by such a statement is not
that the relevant event will take place within tomorrow on every possible path,
but that it will take place within tomorrow on the only path that will actually
be realized, that is, on the actual path. The feature highlighted by this example
is completely general: when agents refer to the future, they refer to the future
states of the actual path, and not on the future states of every possible path.
As a consequence, the temporal language adequate to represent the contents of
agent messages is the linear sublanguage of CTL±, that we shall call LTL± (with
an obvious reference to LTL, the linear sublanguage of CTL*). The syntax and
semantics of LTL± are very easy to define: it is sufficient to drop from both
the grammar and the truth conditions of CTL± all clauses involving the Cert
operator.

We now introduce some derived operators, which will be useful to deal with
time intervals. The Until◦ operator is defined so that when the formula φ Until◦

ψ holds at the starting point of a path p in a model M , φ is the case until
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eventually ψ is true, and at the state at which ψ holds, the truth value of φ does
not matter. We define a slightly different version of such operator, in which φ is
required to be true also at the state at which ψ holds, as follows:

φ Until ψ =def φ ∧ ((Next φ) Until◦ ψ).

The relevant weakened version is defined as follows:

φ WeakUntil ψ =def AlwFut φ ∨ (φ Until ψ).

Let us define the AsSoonAs operator as follows. Formula φ AsSoonAs ψ holds
when at the first state at which ψ is true, also φ is the case. In other words, φ
is true as soon as ψ is (possibly) true. More formally, we have that

φ AsSoonAs ψ =def (ψ → φ) WeakUntil ψ.

We have introduced the → symbol of implication with the usual semantics.

3 Interval Operators

Several papers in the literature have stressed the importance of intervals within
the context of temporal logics. In some cases, intervals are even considered as
fundamental elements in the construction of a theory of action and time [1]. We
adopt an instant-based approach, but nonetheless we see intervals as a simple
yet effective way to increase our language’s expressiveness. Intervals have already
been exploited to deal with deadlines or performance of actions that span a
certain amount of time [6, 11]. We follow the guidelines traced by these works,
but go further, in that we formally describe the arithmetics to deal with dates.
Moreover, our definitions are flexible enough to allow for any well formed formula
of language LTL± within an interval operator, not only dates.

We intend to exploit a pair of interval-based operators, corresponding to the
ideas of universal and existential quantification over the instants in an interval,
respectively. Intuitively, [φ, ψ]χ is a formula that holds if as soon as φ is the
case, from that moment on until ψ possibly holds, χ is true. In other words, the
next occurrence of φ and the subsequent occurrence of ψ set the endpoints of an
interval, at all instants of which χ must hold. Similarly, formula 〈φ, ψ〉χ is the
case when in the interval starting from the next occurrence of φ and ending at
the next state at which ψ is the case, there exists an instant at which χ is true.
Here follow the formal definitions:

[φ, ψ]χ =def (χ WeakUntil ψ) AsSoonAs φ;
〈φ, ψ〉χ =def (¬(¬χ WeakUntil ψ)) AsSoonAs φ.

The notation we use to represent these interval operators should not induce one
to think that they are dual with respect to each other. In fact,

[φ, ψ]χ ↔ ¬〈φ, ψ〉¬χ

is not a valid formula. Here we provide a sketch of the proof. We show that in
a model in which φ is never the case [φ, ψ]χ is valid (1), while ¬〈φ, ψ〉¬χ is not
(2). According to the definition of the [ ] operator, [φ, ψ]χ is true if and only if
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(χ WeakUntil ψ) AsSoonAs φ

is the case, which, by the AsSoonAs operator’s definition, is equivalent to

(φ → (χ WeakUntil ψ)) WeakUntil φ.

In a model in which at every state φ is false, this last formula is valid, as the
outer WeakUntil’s left hand side is a conditional whose antecedent is always
false. Statement 1 has thus been proved. From the definitions of the 〈 〉 and the
AsSoonAs operators, we know that 〈φ, ψ〉¬χ is equivalent to

(φ → ¬(χ WeakUntil ψ)) WeakUntil φ.

Again, in the model we are considering, this formula is valid, as φ is false at every
state, which means that its negation cannot be valid, thus proving Statement 2.

We are interested in discovering what the real dual operators of [ ] and 〈 〉
look like, and in checking whether they may lead to some significant action
expression, but such tasks are beyond the scope of this work.

According to the relevant definitions, any formula of language LTL± can
work as an endpoint of the interval an operator is referring to. For instance, the
formula

[Arrival(Mario), Departure(Mario)]Lodge(Mario, Algonquin)

means that at all instants between Mario’s next arrival and his successive depar-
ture, he will be lodging at the Algonquin Hotel. In this example, two formulae
referring to an event are the limits of the interval, so that a statement is made
about a condition that holds between two specific events. The next section pro-
vides the definition of a special type of formulae corresponding to the dates of
the Gregorian calendar that can be used in the interval operators, in order to
create formulae dealing with conditions holding between specific instants of time.

4 Dates

We want to define a special type of formulae of language LTL± that can work
as statements about the date (and time) associated to the states of the frame
of our branching model. Our approach is as follows: we define a set D which is
comprised of terms that correspond to a specific date, and then a function date,
mapping every state s in S onto a term δ in D, which thus can be considered
as the date of that state. If we have that date(s1) = δ1, and if state s1 is the
starting point of path p (s1 = p0), then

M, p |= Now(δ1)

is the case. The Now predicate holds for a term δ1 at a certain state s1 if and
only if s1’s date is δ1.

Let us provide the formal definition of the dates set D:

D = {yY mMdDhHnNsSiI : Conditions Y, M, D, H, N, S, and I hold }.
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A date term is comprised of seven numeric values, each followed by a letter,
which we call date component, indicating the meaning of such value within the
context of the date itself: Y stands for ‘year’, M for ‘month’, D for ‘day’, H for
hour, N for ‘minute’, S for ‘second’, and I for ‘millisecond’. As an example, the
following date term δk,

δk = 1975Y 12M23D11H35N49S787I,

corresponds to 11:35:49:787 AM on December 23rd 1975.
According to this definition, milliseconds are the shortest amount of time that

can taken into account in our dating system. This is just a working hypothesis,
and can be easily changed so that smaller time quanta, like microseconds, can
be considered.

The conditions that must be followed in order to have a valid date term are
the following:

(Y) y ∈ Z0, that is, the year number must be an integer value, not including
zero; in our conventions, positive integers correspond to A.D. years,
negative integers to B.C. years;

(M) 1 ≤ m ≤ 12, the month number’s boundaries are obvious;
(H) 0 ≤ h ≤ 23;
(N) 0 ≤ n ≤ 59;
(S) 0 ≤ s ≤ 59;
(I) 0 ≤ i ≤ 999, and so are the limiting values of hours, minutes, seconds,

and milliseconds.

Illustrating Condition D, which deals with days, is a little more complicated, as
the range of the day number d depends both on the month (January, February,
and April have all different lengths, for instance), and on the year (Februaries are
one day longer during a leap year). We then have to define a subset of Z0, which
we call LY (Leap Years), comprised of all the integer values that correspond to
a leap year, as follows:

LY = {y ∈ Z0 : (y mod 4 = 0 ∧ y mod 100 �= 0) ∨ y mod 400 = 0}.

Condition D is the case if and only if all the following four sub-conditions hold:

(D1) if m ∈ {1; 3; 5; 7; 8; 10; 12} then 1 ≤ d ≤ 31;
(D2) if m ∈ {4; 6; 9; 11} then 1 ≤ d ≤ 30;
(D3) if m = 2 and y ∈ LY then 1 ≤ d ≤ 29;
(D4) if m = 2 and y /∈ LY then 1 ≤ d ≤ 28.

Function date provides a correspondence between states in S and date terms
in D. We will illustrate how different hypotheses about such function lead to
building dating systems in our branching model with specific characteristics.

Let us first introduce a total order relation < in D. If δ1, δ2 ∈ D, we will
write δ1 ≤ δ2 to mean that the two dates are the same or δ1 < δ2.
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Fig. 1. Different dating systems according to different axioms

4.1 Dating Systems

The simplest assumption that we can make to introduce a meaningful dating
system in frame F is that dates go by following the same direction as the states
in the frame, as follows:

(A) ∀s, s′ ∈ S sRs′ → date(s) ≤ date(s′).

Sector 1 of Figure 1 illustrates a part of a dating system that results from such a
date function: either two consecutive states s and s′ are in the same “date zone”,
that is, share the same date, or the latter’s date is greater than the former’s.

Axiom A is weak enough to allow for “empty dates” on some paths. In our
terminology, a date δ is said to be empty on a path p if p’s starting point has
a smaller date than δ, and no state belonging to the path has δ as its date. For
instance, δ3 is empty on a path depicted in sector 1 of Figure 1, while δ4 is empty
on another path.

If we want to avoid empty dates, we have to make a stricter assumption, as
in the following axiom:

(B) ∀s, s′ ∈ S sRs′ → date(s) = date(s′) ∨ date(s′) = flw(date(s)),

where, given a date δ, function flw is supposed to return the following date, as
in the example below

flw(1999Y 12M31D23H59N59S999I) = 2000Y 1M1D0H0N0S0I.

With such an assumption, the dating system would look like the example in
sector 2 of Figure 1.

Providing a definition of the flw function is not trivial, as we have to take
all the rules that regulate the Gregorian calendar into account. We will rely on
another function (+) which allows us to add a date and an amount of time.
Then we will define the flw function as adding one millisecond (our smallest
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time quantum) to a date: flw(δ) = δ + 1I. Section 4.3 deals with time amounts
and provides a formal definition of the ‘+’ function.

Further restrictions can be imposed on function date. In secotr 2 of Figure 1
we can see that on different paths the sets of states that have δ4 as their date
have different cardinalities. We may want to avoid such condition by imposing
that every date in D corresponds to a set of states that has the same cardinality
on every path in the frame whose starting point comes before that date. We need
to specify this last condition to exclude those paths that start after the date we
are considering, and thus are not significant. Let us define the relation that holds
between a state s and a path p the state belongs to s ∈ p iff ∃k : pk = s. We use
the symbol ∩(p, δ) to refer to the set of states belonging to path p whose date
is δ: ∩(p, δ) = {s ∈ p : date(s) = δ}. Now we can formalize the considerations
above in the form of the following axiom:

(C) ∀δ ∈ D ∃k : ∀p (date(p0) < δ → | ∩ (p, δ)| = k).

A model in which both Axioms B and C hold is depicted in sector 3 of Figure 1.
Finally, we can impose the condition that the flow of successive states and

the flow of consecutive dates coincide, that is, if state s′ is a successor of state s,
then date(s′) immediately follows date(s). This is formalized in Axiom D, and a
relevant model is shown in sector 4 of Figure 1:

(D) ∀s, s′ ∈ S sRs′ → date(s′) = flw(date(s)).

In general, no dating system can be considered better than the others. In our
opinion, the properties that characterize the multiagent system that has to be
modelled following our approach should suggest the best choice.

4.2 Partial Dates

To increase the language’s expressiveness, we extend date set D by introducing
what we call partial dates, that is, dates that are comprised of only some of the
components of a date. 2004Y , 5M1D, and 30N are examples of partial dates. To
provide the relevant formal definition, let DC be the set of the date components
we have already dealt with, and introduce a total order relation ≺ on such set,
as follows:

DC = {Y ; M ; D; H; N ; S; I}, Y ≺M ≺ D ≺ H ≺ N ≺ S ≺ I.

Moreover, for every component K in DC, we write K(δ) to refer to the value
of that component in date δ. The set D̃ (D̃ ⊇ D) of partial dates can then be
defined as follows:

D̃ = {k1K1...kjKj : 1 ≤ j ≤ 7,
∃δ ∈ D : 1 ≤ l ≤ j → Kl(δ) = kl,
1 ≤ p < q ≤ j → Kp ≺ Kq}.

Given a partial date δ̃, we say that it is subsumed by a date δ when all the date
values in δ̃ are the same as the relevant values in δ, and we write δ̃ � δ. For
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instance, we have that 2000Y 7M � 2000Y 7M30D15H30N24S741I. Of course,
given a partial date, there is more than one complete date that subsumes it, and
every complete date subsumes itself. Again, we rely on the Now predicate to
state that a partial date holds at a certain state. We extend the truth conditions
for the dates in D as follows:

∀δ̃ ∈ D̃ M, p |= Now(δ̃) iff ∃δ ∈ D : δ̃ � δ and M, p |= Now(δ).

We can also provide the general truth conditions for dates, whether complete or
partial, as follows:

∀δ ∈ D̃ M, p |= Now(δ) iff p0 = s, date(s) = δ′, δ � δ′.

4.3 Time Amounts

So far, we have considered only absolute dates, but if we want to deal with
relative deadlines or intervals, we have to introduce what we call time amounts.
A is the set of time amounts, as follows:

A = {yY mMdDhHnNsSiI : y, m, d, h, n, s, i ∈ N}.
Time amounts are comprised of the same components as dates, but without any
restriction upon their values. For the sake of simplicity, we omit the components
whose value is zero, so that when we have a time amount like the following,

40D12H0N0S0I,

we write 40D12H. Even if their appearance is the same, partial dates and time
amounts cannot be confused, as they are used in different contexts. Partial dates
can work as limits within interval operators, while time amounts are added to
complete dates to obtain other complete dates. Here follows the definition of the
‘+’ function, which adds a time amount to a date:

+ : D × A → D
δ ∈ D, δ = yY mMdDhHnNsSiI
α ∈ A, α = yαY mαMdαDhαHnαNsαSiαI
δ′ ∈ D, δ′ = y′Y m′Md′Dh′Hn′Ns′Si′I
δ + α = δ′ iff

i′ = (i + iα) mod 1000, cS = (i + iα) div 1000
s′ = (s + sα + cS) mod 60, cN = (s + sα + cS) div 60
n′ = (n + nα + cN ) mod 60, cH = (n + nα + cN ) div 60
h′ = (h + hα + cH) mod 24, cD = (h + hα + cH) div 24
(y′, m′, d′) = incY yα (incMmα (incDdα+cD (y, m, d))).

Let us have a closer look at the items above. All the components from millisec-
onds (I) to hours (H) are dealt with in the same way. We illustrate the case
of milliseconds. We add the values from the complete date δ and the time amount
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α (obviously, the ‘+’ symbol is overloaded in this context), and we calculate
the integer quotient (div) and remainder (mod) with respect to the number of
units of the relevant component which the next larger component is comprised
of (there are 1000 milliseconds in a second, 60 seconds in a minute, and so on).
The reminder ((i + iα) mod 1000) represents the number of milliseconds in the
resulting date (i′), while the quotient ((i + iα) div 1000) is a carry to the next
component (cS). We go on like this up to the hour component, after which we
have to change approach. We cannot rely on modular arithmetics anymore, as the
number of days varies in accordance with months; the month number is periodic,
but starting with 1 instead of 0, which makes the modular arithmetics trickier;
years are just represented by a nonzero integer. Thus, we define functions incD,
incM , and incY , which calculate the new year, month, and day of a date when
it is increased by one day, one month, and one year, respectively. The definitions
of these functions, which are omitted due to lack of space, take into account all
the issues related to the facts that months differ in the number of days, that
there are leap years, and that there exists no year 0 in our conventions.

When adding time amount α to date δ, we apply the incD function dα + cD

times, where dα is the day component of the time amount, and cD is the day
carry that we get from the hour component H. We then add mα months with
the incM function, and finally apply the incY function yα times to obtain the
final result δ′. Following an analogous approach, we can define a function ‘−’
which subtracts a time amount from a complete date.

Let us introduce a non-rigid constant cd() (current date), i.e. a functional
symbol of arity zero, whose interpretation in a model M on path p is the date
at p0. This constant enables us to create some significant examples, dealing with
deadlines or relative dates in the form of LTL± formulae.

5 Dates in Interval Operators

Formulae that are built with the Now predicate and date terms in D̃ can be
used in the interval operators. For example, formula

〈Now(2005Y 1M1D0H0N0S0I),Now(2005Y 12M31D23H59N59S999I)〉rain

means that during year 2005, it rains at least once.
The use of partial dates raises an issue dealing with the end point of the

interval. According to our definitions,

[Now(2001Y 3M),Now(2004Y 2M)]PhDStudent(Mario)

means that PhDStudent(Mario) is the case from the first instant at which it
is March 2001 to the first instant at which it is February 2004. We may want
to include the whole duration of the latter partial date. The following operator
captures this feature:

[φ, ψ]•χ =def [φ, ψ ∧ Next¬ψ]χ.
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Thus,

[Now(2001Y 3M),Now(2004Y 2M)]•PhDStudent(Mario)

means that Mario was a PhD candidate until the end of February 2004. Analo-
gously, we have

〈φ, ψ〉•χ =def 〈φ, ψ ∧ Next¬ψ〉χ.

The following abbreviation can be very useful when we want to refer to the
whole duration of a condition (possibly a date):

[φ]ψ =def [φ, φ]•ψ,
〈φ〉ψ=def 〈φ, φ〉•ψ.

For the sake of simplicity in our notation, from now on we will omit the Now
predicate, relying on the following definitions:

∀δ ∈ D̃ [δ, φ]ψ =def [Now(δ), φ]ψ, [φ, δ]ψ =def [φ,Now(δ)]ψ,
〈δ, φ〉ψ =def 〈Now(δ), φ〉ψ, 〈φ, δ〉ψ =def 〈φ,Now(δ)〉ψ,
[δ, φ]•ψ =def [Now(δ), φ]•ψ, [φ, δ]•ψ =def [φ,Now(δ)]•ψ,
〈δ, φ〉•ψ=def 〈Now(δ), φ〉•ψ, 〈φ, δ〉•ψ=def 〈φ,Now(δ)〉•ψ,
[δ]φ =def [Now(δ)]φ, 〈δ〉φ =def 〈Now(δ)〉φ.

We can exploit these new definitions to write in a much simpler way the
formulae above, as follows:

〈2005Y 〉rain,
[2001Y 3M, 2004Y 2M ]•PhDStudent(Mario).

The endpoints of the interval must be in the future of the time of speech [13]
because the interval operators are defined in terms of future-directed operators
like AsSoonAs and WeakUntil. As we are going to see in the next example, this
means that expressing past facts requires a little more attention. Let us suppose
that Nick lived in Sydney from January 2000 to December 2003 (not included).
The relevant formula would then be

[2000Y 01M, 2003Y 12M ]Live(Nick,Sydney).

The problem with this formula is evident: if such formula is stated in 2004, as
there will not be any next instant at which 2003Y 12M is the case, it will be
trivially true (see the definition of AsSoonAs in Section 2), in the same way as

[2000Y 01M, 2003Y 12M ]Live(Nick,Mars).

To dodge this problem, when dealing with past dates or with an absolute refer-
ence in time, and not a relative one to the next instant at which some condition
holds, we embed the interval operators in another temporal operator, as follows:

Alw φ =def AlwFut φ ∧ AlwPast φ,
[[φ, ψ]]χ =def Alw[φ, ψ]χ.
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Thus, stated in 2004, the formula

[[2000Y 01M, 2003Y 12M ]]Live(Nick,Sydney)

is true, while the following formula is not:

[[2000Y 01M, 2003Y 12M ]]Live(Nick,Mars).

We can make the same considerations and introduce analogous definitions for
the other interval operators:

〈〈φ, ψ〉〉χ =def Alw〈φ, ψ〉χ,
[[φ, ψ]]•χ =def Alw[φ, ψ]•χ,
〈〈φ, ψ〉〉•χ =def Alw〈φ, ψ〉•χ.

Finally, we deal with such important temporal qualifiers as ‘today’, ‘next
year’, and so on. We introduce a family of component selection functions |K1...Kj

(1 ≤ j ≤ 7, 1 ≤ p < q ≤ j → Kp ≺ Kq), which enable us to obtain from a
complete date a partial date comprised only of the selected components K1...Kj

(of course, if δ′ = δ|K1...Kj then δ′ � δ). These functions can be exploited to
deal with the above mentioned expressions, as follows:

cd()|Y MD = today,
(cd() + 1D)|Y MD = tomorrow,
(cd() + 1M)|Y M = next month,
(cd()− 1Y )|Y = last year.

Here are some examples that illustrate how we can use the operators defined
so far to express the temporal constraints in Section 1 in the form of LTL±

formulae.

“The payment is due before the end of May 2004:”
〈cd(), 2004Y 5M〉•Done(payment);

“the payment is due within 30 days from the time of delivery:”
〈Done(delivery), cd() + 30D〉Done(payment);

“the auction will be open from May 1, 2004 to May 6, 2004:”
[2004Y 5M1D, 2004Y 5M6D]•Open(auction);

“the auction will be open for 24 hours:”
[Done(openAuction), cd() + 24H]Open(auction);

“tomorrow the auction will be opened:”
〈(cd() + 1D)|Y MD〉Done(openAuction);

“the auction will be open every day from 8:00 to 18:00:”
[8H, 18H]Open(auction).
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6 Conclusions

This paper aimed at tackling the task of expressing temporal constraints in a
content language of a generic agent communication framework. We went on de-
veloping what we had already sketched in our previous works, the CTL± branch-
ing temporal logic, and focused on its linear sublanguage LTL±. We defined a
dating system with an algebra to add and subtract time amounts, and analyzed
the different possible ways to relate it to the frame of our logical model. We
defined several interval-based operators that are flexible enough to allow for a
rich repertoire of temporal constraints, referring both to general states of affairs
and to dates.

Our interval operators are defined in terms of simpler CTL∗ operators, so
their introduction does not have any significant impact on the proof theory
of CTL∗. Nevertheless, the analysis of derived inference rules that take into
account these new operators is an interesting research path to explore. On the
contrary, dealing with dates from this perspective is more complicated, in that
their algebra would have to be fully axiomatized to be taken into account by an
automatic reasoner.

We believe that our proposal is powerful and natural enough to serve as a
basis for a standard treatment of temporal conditions in a content language for
agent communication. As we have already suggested, this is a necessary step
towards the definition of an ACL capable of being used in real applications.
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Abstract. This paper describes a protocol language which can provide
agents with a flexible mechanism for coherent dialogues. The protocol
language does not rely on centralised control or bias toward a particu-
lar model of agent communication. Agents can adapt the protocol and
distribute it to dialogical partners during interactions.

1 Introduction

As the programming paradigm of agency evolves, more robust, diverse, and
complex agents are developed. The growing heterogeneity of agent societies will
increase even further as the research and development of deliberative and com-
municative models produce new and interesting approaches. The need for an
equally adaptive means of communication between this heterogeneous multitude
also grows.

Electronic Institutions [2] and other state-based approaches are not feasible
for use in open multi-agent systems with dynamic or large conversation spaces.
The term conversation space is used to express every possible sequence and
combination of messages that can be passed between two or more agents partic-
ipating in a given agent system. Protocols provide a useful framework for agent
conversations and the concern that they sacrifice agent autonomy is exaggerated.
In social interactions, humans and agents must willingly sacrifice autonomy to
gain utility. If I want my train tickets or cup of coffee, I must follow the implicit
protocol and join the queue. It is the same for software agents. If the agent
must gain a resource only available by participating in an English auction, it
behooves the agent to adopt the protocol necessary for participation in the auc-
tion. Whether this is done by an explicitly defined protocol or the agent learning
the protocol implicitly makes no difference to the agent’s behavior within the
system.

Electronic Institutions take a societal approach to agent communication. Con-
trol is top-down. Administrative agents perch above the system and keep an eye
on the agents as they interact inside the system. These Administrative agents
regulate participating agent’s dialogical activities by forcing them to adhere to
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the formal definition of the Electronic Institution. The institution is defined by a
set of roles for agents, a shared dialogical framework, the division of the Institu-
tion into a number of scenes and a performative structure which dictates, via a
set of normative rules, the relationships between the scenes. This provides highly
reliable but very constrained multi-agent systems. Electronic Institutions is only
one approach to modeling interaction protocols. There are various others [6, 5, 9]

Agent-centric approaches build systems bottom-up. These approaches at-
tempt to pack individual agents with a model of communication which can react
to a multi-agent system. Dialogical actions are not prescribed to the agent be-
forehand. Instead, using their model of communication agents attempt to figure
out the next action to take. There are many different approaches to achieve this
such as cognitive dissonance theory [13]. The concept of social commitment or
obligation has been employed in [4, 20] One of the more interesting approaches
is dialogue games. The papers of [14, 1, 7] all use dialogue theory and games to
create flexible agent dialogues. The example given in section 4 demonstrates the
use of dialogue games with the protocol language.

The protocol language described in this paper seeks a balanced approach. It
utilises the useful aspects of Electronic Institutions without relying on adminis-
trative agents or statically defined protocol specifications. Agents communicate
not only individual messages but the protocol and dialogue state as well. The
use of protocols provides structure and reliability to agent dialogues. Yet, by
describing protocols as a process rather than a fixed state-based model, the con-
versation space can be defined as the agent interaction progresses rather than
being statically defined during the engineering process. Distributing the protocol
along with the message also allows agents to communicate the social conventions
of the dialogue as well as coordinate it.

Section 2 describes the protocol language and a framework for implementa-
tion. Section 3 describes how agents can adapt their protocols to create dynamic
and flexible dialogues. Section 4 provides an example to illustrate the main points
of the protocol language and its ability to be adapted during execution. Section 5
concludes the paper with the hazards and successes of this approach.

2 The Protocol Language

The development of the protocol language is a reaction to Electronic Institu-
tions [17]. Although the EI framework provides structure and stability to an
agent system, it comes at a cost. Integral to EI is the notion of the adminis-
trative agents. Their task is to enforce the conventions of the Institution and
shepherd the participating agents. Messages sent by agents are sent through the
EI. This synchronises the conversation between the conversing agents, and keeps
the administrative agent informed of the state of the interaction

An unreliable keystone makes the whole of the arch defective, just as the
system is now dependent on the reliability and robustness of its administrative
agent. Also, this centralisation of control runs counter to the agent paradigm of
distributed processing. Within the scenes of Electronic Institutions, interaction
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M ∈ 〈m,P〉 (message) m ∈ a communicative act
P ∈ 〈S,A{n},K 〉 (Protocol) A ∈ θ :: op. (Agent Clause)
θ ∈ agent(r,id) ψ ∈ a predicate
op ∈ null | θ | (op)(Precedence) | M ⇒ θ (Send) | M ⇐ θ (Receive)

| op1 then op2 (Sequence) | op1 or op2 (Choice)
| op1 par op2 (Parallelism) | ψ ← M ⇐ θ (Consequence)
| M ⇒ θ ← ψ (Prerequisite)

Fig. 1. The abstract syntax of the protocol

protocols are defined to guarantee that agents utter the proper illocutions and
utter them at the appropriate time. This is defined formally by the specifications
of the EI and left to the designers of individual agents to implement. It assumes
that the agent’s interaction protocol covers the entire conversation space before
the conversation occurs. If the interaction needs of the institution change, this
would require redefinition of the Institution and re-synthesis of the individual
agents. Agents are also expected to know the global state of the system and their
exact position within it. In EIs this is handled by an administrative agent whose
job it is to synchronise the multitude of agents involved.

The protocol language addresses some of these shortcomings of EIs but re-
tains the benefits of implementing the EI framework. Its goal is to lessen the
reliance on centralised agents for synchronisation of individual participants in
the system, provide a means for dissemination of the interaction protocol and
to separate the interaction protocol from the agent’s rationalisations to allow
the dynamic construction of protocols during the interaction. By defining inter-
action protocols during run-time, agents are able to interact in systems where
it is impossible or impractical to define the protocol beforehand. For example,
negotiation dialogues where the domain of negotiation is not fixed or unknown.
Another example would be diagnosis dialogues where the course of the dialogue
is determined by the information sent and not a fixed sequence of messages.
The protocol language defined in Figure 1 is similar to the protocol language
described in [19] for which the formal semantics have been defined. The rewrite
rules in figure 2 are defined in terms of these semantics.

Figure 1 defines the syntax of the protocol language. An agent clause is com-
posed of an agent definition and an operation. The agent definition individuates
the agents participating in the conversation (id), and the role the agent is play-
ing (r). Operations can be classified in three ways: actions, control flow, and
conditionals. Actions are the sending or receiving of messages, a no op, or the
adoption of a role. Control Flow operations temporally order the individual ac-
tions. Actions can be put in sequence (one action must occur before the other),
in parallel (both action must occur before any further action), or given a choice
point (one and only one action should occur before any further action). Con-
ditionals are the preconditions and postconditions for operations. The message
passed between two agents using the protocol consists of two parts. The first
is the actual illocution (m) the agent is wishing to express. The second is the
full protocol (P) itself. This is the protocol for all agents and roles involved in
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the conversation. This will be necessary for the dissemination of the protocol as
new agents enter the system. Other aspects of the protocol are the inclusion of
constraints on the dialogue and the use of roles. An agent’s activities within a
multi-agent system are not determined solely by the agent, rather it is the rela-
tionship to other agents and the system itself that helps determine what message
an agent will send. These can be codified as roles. This helps govern the activity
of groups of agents rather than each agent individually. Constraints are marked
by a ‘←’. These are requirements or consequences for an agent on the occurrence
of messages or the adoption of roles. The constraints provide the agent with a
shared semantics for the dialogue. These constraints communicate meaning and
implication of the action to the agent’s communicating partner. For example, an
agent receiving a protocol with the constraint to believe a proposition s upon
being informed of s can infer that the agent sending the protocol has a particular
semantic interpretation of the act of informing other agents of propositions (i.e.
The receiving agent is expected to believe s when informed of s). The ‘⇐’ and
‘⇒’ mark messages being sent and received. On the left-hand side of the double
arrow is the message and on the right-hand side is the other agent involved in
the interaction.

An agent must be able to understand the protocol, the dialogue state, and
its role within the protocol. Agents need to be able to identify the agent clause
which pertains to its function within the protocol and establish what actions it
must take to continue the dialogue or what roles to adopt.

2.1 Implementing the Protocol Framework

A message is defined as the tuple, 〈m,P〉. Where m is the message an agent is
currently communicating, and P is the protocol written using the language de-
scribed in figure 1. The protocol, in turn, is a triple, 〈S,A{n},K 〉. S is the dialogue
state. This is a record of the path of the dialogue through the conversation space
and the current state of the dialogue for the agents. The second part is a set of
agent clauses, A{n}, necessary for the dialogue. The protocol also includes a set
of axioms, K, consisting of common knowledge to be publicly known between
the participants. The sending of the protocol with the messages allows agents
to represent the various aspects of Electronic Institutions described [2, 3]. In
addition, agents themselves communicate the conventions of the dialogue. This
is accomplished by the participating agents satisfying two simple engineering
requirements. Agents are required to share a dialogical framework. The same is
required of Electronic Institutions, and is an unavoidable necessity in any mean-
ingful agent communication. This includes the requirements on the individual
messages are expressed in a ontology understood by the agents. The issue of
ontology mapping is still open, and its discussion extends beyond the scope of
this paper. The second requirement obligates the agent to provide a means to
interpret the received message and its protocol. The agent must be able to un-
pack a received protocol, find the appropriate actions it may take, and update
the dialogue state to reflect any actions it chooses to perform.
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A :: B
Mi,Mo,P,O−−−−−−−−→ A :: E

if B
Mi,Mo,P,O−−−−−−−−→ E

A1 or A2
Mi,Mo,P,O−−−−−−−−→ E

if ¬closed(A2) ∧ A1
Mi,Mo,P,O−−−−−−−−→ E

A1 or A2
Mi,Mo,P,O−−−−−−−−→ E

if ¬closed(A1) ∧ A2
Mi,Mo,P,O−−−−−−−−→ E

A1 then A2
Mi,Mo,P,O−−−−−−−−→ E then A2

if A1
Mi,Mo,P,O−−−−−−−−→ E

A1 then A2
Mi,Mo,P,O−−−−−−−−→ A1 then E

if closed(A1) ∧ A2
Mi,Mo,P,O−−−−−−−−→ E

A1 par A2
Mi,Mo,P,O1∪O2−−−−−−−−−−−→ E1 par E2

if A1
Mi,Mn,P,O1−−−−−−−−→ E1 ∧ A2

Mn,Mo,P,O2−−−−−−−−−→ E2

C ← M ⇐ A
Mi,Mi−{M ⇐ A},P,∅−−−−−−−−−−−−−−→ c(M ⇐ A)

if (M ⇐ A) ∈ Mi ∧ satisfy(C)

M ⇒ A ← C
Mi,Mo,P,{M ⇒ A}−−−−−−−−−−−−−→ c(M ⇒ A)

if satisfied(C)

null ← C
Mi,Mo,P,∅−−−−−−−→ c(null)

if satisfied(C)

agent(r, id) ← C
Mi,Mo,P,∅−−−−−−−→ a(R, I) :: B

if clause(P, a(R, I) :: B) ∧ satisfied(C)

A protocol term is decided to be closed, meaning that it has been covered by the
preceding interaction, as follows:

closed(c(X))
closed(A or B) ← closed(A) ∨ closed(B)
closed(A then B) ← closed(A) ∧ closed(B)
closed(A par B) ← closed(A) ∧ closed(B)
closed(X :: D) ← closed(D)

satisfied(C) is true if C can be solved from the agent’s current state of knowledge.
satisfy(C) is true if the agent’s state of knowledge can be made such that C is satisfied.
clause(P, X) is true if clause X appears in the dialogue framework of protocol P, as
defined in Figure 1.

Fig. 2. Rules for expanding an agent clause

Figure 2 describes rules for expanding the received protocols. Details can be
found in [15]. A similar language for web services is described in [16]. An agent
receives a message of the form specified in figure 1. The message is added to the
set of messages, Mi, currently being considered by the agent. The agent takes
the clause, Ci, from the set of agent clauses received as part of P. This clause
provides the agent with its role in the dialogue. The agent then expands Ci by
the application of the rules in figure 2. The expansion is done with respect to
the different operators encountered in the protocol and the response to Mi. The
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〈Ci
Mi,Mi+1,P,Oi−−−−−−−−−−→ Ci+1, . . . , Cn−1

Mn−1,Mn,P,On−−−−−−−−−−−→ Cn〉

Fig. 3. Sequence of rewrites

result is a new dialogue state, Cn; a set of output messages, On and a subset of
Mi, which is the remaining messages to be considered,Mn. The result is arrived
at by applying the rewrite rules. The sequence would be similar to figure 3. Cn is
then sent as part of P which will accompany the sending of each message in On.

2.2 Features of the Protocol

Several features of the protocol language are useful for agents capable of learning
and adapting to the multi-agent system in which they participate. Sending the
dialogue state during the interaction provides agents with several advantages. It
is no longer necessary for an administrative agent to shepherd the interaction.
The sending of the protocol with the message uses the ‘hot potato’ approach to
communication. The interaction is coordinated by which agent currently ‘holds’
the protocol. The reception of a message would cue an agent to action. The
sending of the protocol provides a means for disseminating the social conven-
tions for the dialogue. The most common approach is to use specifications to
be interpreted by individual engineers. The protocol directly communicates the
social conventions and expectations an agent has for the dialogue. Agents with
the ability to learn could use the received protocol to plan ahead or modify its
own social conventions to be able to communicate with other agents. The pro-
tocol language is strictly concerned with the interaction level of communication.
The semantics of the language does not depend on any assumptions about the
agent’s internal deliberative model. All requirements for the interaction are pub-
licly specified with the protocol. Agents with different models of deliberation are
able to communicate [11].

3 Means of Adaptation

Protocols are traditionally seen as a rigid ordering of messages and processing to
enable a reliable means of communication. Agent-centric approaches have tended
to avoid their use, lest agents be reduced to nothing more than remote function
calls for the multi-agent system. The control over agent interactions within an
electronic institutions is indeed intrusive. The administrative agents of electronic
institutions have complete control. The sequence of messages are dictated but
also the roles an agent may adopt and the actions an agent must take within
and outside of the context of the dialogue.

The protocol language of this paper does not follow this tradition. It is de-
signed to bridge the gap separating the two approaches to agent interaction.
The language is capable of representing the scenes and performative structure of
electronic institutions, but it is not limited to electronic institution’s inflexible
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model of agent interaction. The protocol language and the process of sending
the protocol during execution provides agents with a means of adaptation.

In the electronic institution model, the protocol does not exist within the
participating agents. It is retained by the institution itself, and designers must
engineer agents that will strictly conform to the protocol which will be dictated
by the administrative agents. Our approach delivers the protocol to the partic-
ipating agents. Individual agents are given providence over the protocol they
receive. This returns the power of the interaction to the participating agents.
For example, the protocol received is not required to be the protocol that is
returned.

The protocol, as described so far, already allows for a spectrum of adaptabil-
ity. At one extreme, the protocol can be fully constrained. Protocols at this end
of the spectrum would be close to the traditional protocols and electronic insti-
tutions. By rigidly defining each step of the protocol, agents could be confined
to little more than remote processing. This sacrifice allows the construction of
reliable and verifiable agent systems. At the other extreme, the protocols would
be nothing more than the ordering of messages or even just the statement of le-
gal messages(without any ordering) to be sent and received. Protocols designed
this way would be more akin to the way agent-centric designers envisage agent
communication. Agents using these protocols would be required to reason about
the interaction to determine the next appropriate step in the dialogue. Though
the protocol language is expressive enough for both extremes of the spectrum,
the bulk of interactions are going to be somewhere in the middle. A certain
amount of the dialogue will need to be constrained to ensure a useful dialogue
can occur. This allows agents to express dynamic and interesting dialogues.

The protocol language is flexible enough to be adapted during run-time. Yet,
protocols modified indiscriminately would return us to the problem facing the
agent-centric approach. We would have a model for flexible communication, but
no structure or conventions to ensure a meaningful dialogue can take place. It is
necessary to constrain any adaptation in a meaningful way. By the examination
of patterns and standards of an agent-centric approach, protocols can be con-
struct to have points of flexibility. Portions in the dialogue can be adapted with-
out losing the benefits of a protocol-based approach. The example below employs
the rules for playing a dialogue game, the protocol language, and an amendment
to the rewrite rules to allow a more dynamically constructed protocol.

4 Example

Figure 4 shows the agent clauses needed to play an Information-seeking dialogue
game similar to the one defined in [12]. The dialogue game rules are simplified to
clarify its implementation within the protocol. There are countless variations on
the rules for any one type of dialogue game. This illustrates a continuing problem
with agent-centric communication design. It is not a trivial requirement to ensure
agents within a system are employing the same communicative model. This is
the same with dialogue games. Subtle differences could break the dialogue. By
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the use of the protocol, agent can communicate their ‘house’ rules for the game.
The rules for this particular game are as follows:

1. The game begins with one agent sending the message question(p) to another
agent.

2. Upon receiving a question(p) message, an agent should evaluate p and if
it is found to be true, the agent should reply with assert(p) else send an
assert(null) which is a failure message.

3. Upon receiving an assert(p), an agent should evaluate the assertion, then
the agent can send an accept(p) or challenge(p) depending on whether the
agent’s acceptance attitude will allow.

4. Upon receiving a challenge(p), an agent should send an assert(S). S is a set
of propositions in support of p.

5. For each proposition in S, repeat steps 3 and 4.
6. The game is over when all propositions have been accepted or no further

support for a proposition can be offered.

Rule one is satisfied by an agent taking up the role of the ‘seeker’. This
provides the agent with the legal moves necessary to play that side of the
information-seeking dialogue game. The other agent will receive the question(p)
message along with the protocol of figure 4. The agent identifies the clause which
it should use. In this example, the clause playing the ‘provider’ role. It is nec-
essary to use constraints to fully satisfy the second rule. Part of the rule states
an agent sending an assert(p) depends on its knowledge base and its assertion
attitude, otherwise an assert(null) is sent. The constraint verify(p) is assumed
to be satisfiable by the agent. The agent is free to satisfy the constraint how it
prefers. This could range from a simple function call to a complex belief logic
with identity evaluation. The protocol only states what conditions must be sat-
isfied, not how. The recursive steps are handled by the roles of eval (evaluate)
and def (defend) which are similarly constrained. Finally, the termination rule
for the game is written as the last line in the ’evaluate’ role. No more messages
are sent when the remainder of the set of propositions is empty.

Similar protocols can be written to express the other atomic dialogue types.
Real world dialogues rarely consist of a single dialogue game type. [8] formally
describe several combinations of dialogue types. Iteration is the initiation of a
dialogue game immediately following the finishing of another dialogue game of
the same type. Sequencing is the similar to iteration except that the following
dialogue game can be of any type. In Parallelisation of dialogue games, agents
make moves in more than one dialogue game concurrently. Embedding of dialogue
games occurs when during play of one dialogue game another game is initiated
and played to its conclusion before the agents continue playing the first. The
example involves two agents; a doctor and a patient. The patient is trying to find
out whether the proposition ‘patient is ill’ is true (i.e. looking for a diagnosis).
This is the perfect scenario to play an information-seeking dialogue game and
to use the dialogue game protocol. Figure 5 and 6 shows the dialogue state as it
is rewritten during the course of the dialogue.
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agent(infoseek(P, B), A) ::
agent(provider(P, A), B) or
agent(seeker(P, B), A).

agent(seeker(P, B), A) ::
question(P ) ⇒ agent(provider(P, A), B) then
assert(P ) ⇐ agent(provider(P, A), B) then
agent(eval(P, B), A) or
assert(null) ⇐ agent(provider(P, A), B).

agent(provider(P, A), B) ::
question(P ) ⇐ agent(seeker(P, B), A) then
(assert(P ) ⇒ agent(seeker(P, B), A) ← verify(P ) then
agent(def(P, A), B)) or
assert(null) ⇒ agent(seeker(P, B), A).

agent(eval([P |R], B), A) ::
accept(P ) ⇒ agent(def([P |R], A), B) ← accept(P ) or⎛
⎝ challenge(P ) ⇒ agent(def([P |R], A), B) then

assert(S) ⇐ agent(def([P |R], A), B) then
agent(eval(S, B)A)

⎞
⎠

then(
null ← R = [] or
agent(eval(R, B), A)

)
.

agent(def([P |R], A), B) ::
accept(P ) ⇐ agent(eval([P |R], B), A) or⎛
⎝ challenge(P ) ⇐ agent(eval([P |R], B), A) then

assert(S) ⇒ agent(eval([P |R], B), A)
← justify(P, S)

⎞
⎠

.

Fig. 4. The agent clauses for the information-seeking protocol

The patient begins the dialogue by taking the initial agent clause of infoseek
which stands for information-seeking. This step is labeled 1. The agent applies
the rewrite rules to expand the seeker role and sends the question to the doctor
agent, step 2. The doctor receives the message and the protocol. The applies the
rewrite rules and finds the only instantiation that is possible is the unfolding of
the provider role. It applies the rewrite rules and comes to the verify constraint
which it is unable to satisfy. It cannot determine the truth value of the proposi-
tion and is unwilling to defend the proposition. It takes the other half of the or
operator and sends the assert(null). Let us assume the doctor agent is a bit more
clever. It cannot currently assert that the patient is ill. It has a knowledge-base
and an inference engine that allows it to figure whether the proposition is true
or not, and it needs some more information from the patient. The particular
kind of information would depend on each patient consultation. If this diagno-
sis scenario was part of an electronic institution, the institution would have to
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agent(infoseek(“patient is ill′′, doctor), patient) ::
agent(seeker(“patient is ill′′, doctor), patient) (1)

agent(infoseek(“patient is ill′′, doctor), patient) ::
question(“patient is ill′′) ⇒ agent(provider(“patient is ill′′, patient), doctor) (2)

agent(infoseek(“patient is ill′′, doctor), patient) ::
question(“patient is ill′′) ⇒ agent(provider(“patient is ill′′, patient), doctor) then
assert(null) ⇐ agent(provider(“patient is ill′′, patient), doctor).

(3)

Fig. 5. The progression of the dialogue state for the patient

agent(infoseek(“patient is ill′′, patient), doctor) ::
agent(provider(“patient is ill′′, patient), doctor) (1)

agent(infoseek(“patient is ill′′, patient), doctor) ::
question(“patient is ill′′) ⇐ agent(seeker(“patient is ill′′, doctor), patient) then
assert(null) ⇒ agent(seeker(“patient is ill′′, doctor), patient).

(2)

Fig. 6. The progression of the dialogue state for the doctor

represent in a state diagram every possible permutation of a diagnosis scenario.
This is not practical, if not impossible.

Instead, the doctor agent can use the patterns of dialogue games to structure
the interaction but allow adaptations to handle any run-time dialogical needs
that may arise. In the example, the doctor agent needs to ask about a different
proposition before it can answer the patient’s original query. This is achieved by
an additional rewrite rule shown in figure 7.

This allows the agent to graft the infoseek agent clause between any term
in the protocol. These rewrites can be expanded further to represent other dia-
logue combinations as well as domain specific rewrite rules. Figure 8 shows the se-
quence of dialogue states for the doctor agent capable of embedding information-
seeking games. The expansions and dialogue begin the same, but rather than

A
Mi,Mo,P,O−−−−−−−−→ A then B

if clause(P, B) ∧ isa(B, dialogue − type)

isa(infoseek, dialogue − type).

Fig. 7. Additional rewrite rule
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agent(infoseek(“patient is ill′′, patient), doctor) ::
question(“patient is ill′′) ⇐ agent(seeker(“patient is ill′′, doctor), patient) then
agent(infoseek(“patient has a fever′′, patient), doctor).

(2)

agent(infoseek(“patient is ill′′, patient), doctor) ::
question(“patient is ill′′) ⇐ agent(seeker(“patient is ill′′, doctor), patient) then
question(“patient has a fever′′)

⇒ agent(provider(“patient has a fever′′,doctor),patient)
(3)

. . .

agent(infoseek(“patient is ill′′, patient), doctor) ::
question(“patient is ill′′) ⇐ agent(seeker(“patient is ill′′, doctor), patient) then
question(“patient has a fever′′) ⇒

agent(provider(“patient has a fever′′,doctor),patient) then
assert(“patient has a fever′′) ⇐

agent(provider(“patient has a fever′′,doctor),patient) then
assert(“patient is ill′′) ⇒ agent(seeker(“patient is ill′′, doctor), patient).

Fig. 8. The progression of the dialogue state for the doctor with embedding

just sending the assert(null). The agent inserts the agent definition agent (infos-
eek (”patient has a fever”),patient),doctor). The next instance of a information-
seeking dialogue is begun. The moves of the embedded dialogue game are in bold
text. In this instance the patient plays the provider role and the doctor plays
the seeker. The game is finished by the patient asserting ”patient has a fever”.
The doctor, now knowing this proposition to be true, has enough knowledge to
assert the original proposition posed by the patient’s first question. The first
information-seeking game also concludes successfully by the doctor making the
diagnosis and asserting the proposition ”patient is ill” is true.

5 Conclusions

The protocol language described in the paper is expressive enough to represent
the most popular approaches to the agent communication. It is able to capture
the various aspects of Electronic Institutions such as the scenes, performative
structure, and normative rules. This enables agents to have structured and mean-
ingful dialogues without relying on centralised control of the conversation. The
language is also capable of facilitating agent-centric approaches to agent commu-
nication. Agents pass the protocol to their dialogical partners to communicate
the social conventions for the interaction. Agents can adapt the received pro-
tocols to explore dynamic conversation spaces. The protocol language in this
paper is not seen as a replacement for either model of agent communication.
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Instead, it synthesizes the two approaches to gain the advantages of both. Pro-
tocols are used to coordinate and guide the agent’s dialogue, but agents are able
to adapt the protocol by using an agent-centric model for communication. The
use of this communicative model constrains transformation to the agent clauses
in meaningful ways. The run-time delivery provides the mechanism for communi-
cating the protocol as well as any adaptations that are made. We are developing
FIPA compliant agents which uses the ACL library and the protocol language.
It is hoped that the verifiability and semantic problems associated with FIPA’s
ACL can be mitigated by the use of the protocol language to communicate the
performative’s semantics during their use.

This approach does raise new issues which have not been addressed in this pa-
per. One issue concerns restricting changes to the protocols. There are certainly
dialogues where certain agents will be restricted from modifying the protocols
or dialogue which require portions of the protocol to remain unchanged. There
is also the issue of malicious agents. An agent could attempt to modify the di-
alogue state or the protocol in some dubious manner. The public expression of
the protocol would certainly impede the naughty agent from gaining much from
this activity, but the issue still needs to be addressed more fully. There is also
some concerns with the amount of data being transmitted and the possibility of
situations which do not require transmission of the dialogue state or the agent
clauses. For example, agents who routinely communicate together or are known
to maintain the dialogue state themselves. This remains for future work along
with development of a vocabulary of generic transformations which can be proved
a priori or verified to retain semantic and syntactical continuity of the protocols.

The protocol language has already been shown to be useful for a number of
agent purposes. A scheduling program has been developed using the protocol
written in Prolog and using LINDA. A Java-based agent framework also exists
which uses an XML representation of the protocols. Separating the protocol
from the deliberative and communicative models of agency makes definition and
verification simpler tasks. Tools have already been developed which use model-
checking for automatic verification [18]. The protocol language has been used
to implement the generic dialogue framework of [8] and the negotiation game
described in [10].
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Abstract. In order to provide flexible control over agent communica-
tion, we propose an integrated approach that involves using positive and
negative permissions and obligations to describe both conversation speci-
fications and policies. Conversation specifications are described in terms
of the speech acts that an agent can/cannot/must/must not perform
based on the sequence of messages received and sent. On the other hand,
conversation policies restrict how the specifications are used and are de-
fined over the attributes of the sender, receiver, message content, and
context in general. Other policies like management, social, privacy etc.
are defined at a higher level of abstraction and restrict the general be-
havior of agents. Whenever they deal with communication, the higher
level policies are translated into conversation policies using the syntax
and semantics of the specific communication language being used. Agents
use a policy engine for reasoning over conversation specifications and ap-
plicable policies in order to decide what communicative act to perform
next. Our work is different from existing research in communication poli-
cies because it is not tightly coupled to any domain information such as
mental states of agents or specific communicative acts.The main contri-
butions of this work include (i) an extensible framework that can support
varied domain knowledge and different agent communication languages,
and (ii) the declarative representation of conversation specifications and
policies in terms of permitted and obligated speech acts.

1 Introduction

Multi-agent systems assume that agents interact and collaborate to satisfy their
goals. Agent communication plays a very important part in these systems. A
conversation can be defined as a sequence of communicative acts exchanged be-
tween interacting agents towards satisfying a particular goal [1, 2, 3]. In order for
a conversation to be meaningful, it should follow some structured specifications.
However, these conversation specifications or interaction protocols solely define
the order in which communicative acts can be performed and do not take into
consideration the content of the message, the attributes of the sender or the re-
cipient or any other context. Similar to Phillips [3], we propose that along with
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conversation specifications, agents should use policies that define constraints over
different aspects of the conversation in order to provide more flexible control over
agent communication. This also allows the communication modules of agents to
be less dependent on the communication protocols permitting the modification
of conversation specifications and policies without requiring the modules to be
changed.

We believe that similar mechanisms should be used to reason over and inte-
grate specifications and policies allowing agents to understand and apply both
uniformly. As positive and negative authorization and obligation policies can be
used to model different kinds of behavior [4], by representing conversation spec-
ifications and policies, they can also be used to represent ideal communicative
behavior.

We differentiate between conversation specifications that define the order of
communicative/speech acts and policies that affect how conversation specifica-
tions are used and how conversations are carried out. Conversation specifications,
or interaction protocols as they are known within FIPA [5], define the order in
which communicative acts can occur within a conversation. For example, on re-
ceiving a REQUEST communicative act, an agent can reply with REFUSE or
AGREE [5]. On the other hand, we define conversation policies as restrictions on
communication based on the content of the communicative act, the attributes
of the sender and recipient including their beliefs, desires and intentions and
other context like the current team they belong to, the time of day, and their
location. For example, a conversation policy would oblige an agent to provide
an evasive answer to a QUERY about a political issue in an office setting but
permit it to provide a more truthful answer in a social setting. We also consider
other policies like privacy, work, and social that may establish additional restric-
tions and limitations on the communicative capabilities of the agent. Consider
an agent that has a privacy policy prohibiting it from disclosing the SSN of the
user. Though the conversation specification provides the set of communicative
acts the agent can use to reply to a QUERY, its privacy policy prohibits it from
responding to any query involving the SSN of the user. Conversation specifica-
tions define all possibilities that can be used in a certain sequence of speech acts,
whereas conversation policies and other higher policies narrow what is allowed
by and broaden what is required by specifications. As there is a possibility of
conflict between specifications and policies, we assume that conversation policies
are always of higher priority than the specifications.

As an example, we describe the recent issue with the Medicare prescription
drug bill in the United States [6] in terms of agent communication. According
to the CNN article, Rick Foster, chief actuary for the Centers for Medicare and
Medicaid Services, stated that he was asked not to answer questions from con-
gressional Democrats regarding the cost of the bill before a series of key votes last
summer. We describe how this would have worked within a multi-agent system
driven by our conversation specifications and policies. Agents, including Foster,
would have a conversation specification that states that in response to a QUERY,
the agent is permitted to use either AGREE followed by an INFORM/FAILURE
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or REFUSE or ignore the message. The work policy would state that all govern-
ment employees are obliged to answer queries from the congressional Democrats.
However, agency chief Thomas Scully, enforces a temporary policy of the highest
priority on Foster stating that Foster is obliged to REFUSE all queries from con-
gressional Democrats regarding the estimated cost of the Medicare prescription
drug bill until the end of summer. There also exists a sanction associated with
the failure to fulfill this obligation which states that Foster could lose his job.

Whenever Foster receives a message, he reasons over his conversation spec-
ifications and policies to figure out how he should respond. When he receives
a QUERY from a congressional Democrat asking about the estimated cost of
the bill he knows from the conversation specifications that the correct response
is AGREE or REFUSE. As his work policy obliges him to answer all queries
from congressional Democrats, under normal circumstances Foster would agree.
However, as Scully’s temporary policy overrides the work policy and because of
the associated sanction, Foster follows Scully’s policy and REFUSEs the query.
Scully’s policy could also include rules obliging Foster to send an evasive reply
to the congressional Democrats instead of refusing to answer.

2 Framework

Our framework mainly involves using permissions and obligations to control
the communicative behavior of agents. It includes techniques for (i) describing
conversation specifications using a specific agent communication language, (ii)
defining conversation policies, (iii) resolving conflicts within specifications and
policies using meta-policies, and (iv) using a policy engine to reason over the
domain knowledge, specifications, policies, and meta-policies to enable an agent
to decide what speech act it can/must use next.

2.1 Overview

A communicative or speech act is defined in terms of the set of actions that are
implied when an agent makes an utterance. Generally, there are three actions
that can be identified; (i) locution, which is the action of uttering the speech act,
(ii) illocution, which deals with the conveying of the intentions of the sender,
and (iii) perlocution, which are actions that occur due to the illocution.

Though our work has been done in OWL [7], a web ontology language used
to describe metadata about entities, for conciseness and ease of explanation, we
use expressions in predicate logic to describe speech acts, positive and negative
deontic objects, and policies.

– A communicative or speech act is performed by an agent to achieve a certain
intention. A speech act is usually assumed to have two main components;
the performative and the proposition.
We describe a communicative act as a tuple

performative(Sender, Receiver, Proposition)
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For example, a QUERY-REF speech act of FIPA sent from agentX to agentY
asking agentY what he believes the values of the included proposition to be

query-ref(agentX, agentY, estimatedCostOfBill(Cost))

– Domain actions are actions that an agent can perform and are described by
the following tuple

action(Actor, Target, PreCondition, Effect)

The printAPage domain action can be described as

printAPage(X, hpLaitPrinter,
(numPages(hpLaitPrinter, N), N>0),
(numPages(hpLaitPrinter, N-1)))

– Deontic concepts of permissions, prohibitions (negative permissions), obli-
gations and dispensations (waiver from an obligation) are used to describe
the behavior of the agent.

deontic(Actor, Action, Constraint)
or
deontic(Actor, Action, StartingConstraint, EndingConstraint)

Consider the permission of an agent to perform an AGREE speech act to
any agent regarding for the estimated cost of the Medicare prescription bill.
This is considered a policy as it includes domain knowledge of the proposition
used to model the cost of the bill.

permission(X, agree(X, Y, estimatedCostOfBill(Cost)), _)

We model four deontic objects: permission, prohibition, obligation and dis-
pensation. Permissions and prohibitions are used to describe positive/
negative authorizations whereas obligations and dispensations describe posi-
tive/negative responsibilities. All these objects could be represented in terms
of a single concept, either permission or obligation, but we use different terms
for simplicity.

Associated with each deontic object is either constraint, which defines the
conditions under which the deontic object is applicable, or startingConstraint
and endingConstraint that define the window within which the deontic object
is applicable. These constraints could also include conditions on time provid-
ing time validity to the deontic object. Obligations and dispensations have
an additional field, obligedTo, which describes whom the agent is obliged to.
Another property called sanctions is associated with both obligations and
prohibitions and is used to describe the penalties imposed on the agent if it
fails to fulfill the obligation or violates the prohibition. Consider a policy of
a graduate assistant that obliges him to turn in a weekly status report to
his advisor or risk missing a pay check.
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obligation(X, inform(X, Y, weeklyStatus(X, W, Status)),
(advisor(Y, X), endOfWeek(W)), Y, missPayCheck(X, W))

A permission allows an agent to perform the associated action as long as
the constraint is true or the startingConstraint is true and the endingCon-
straint is false. A prohibition prevents an agent from performing the asso-
ciated action as long as the constraint is true or during the time when the
startingConstraint is true and the endingConstraint is false. An agent must
perform an obligation sometime before the endingConstraint is false and af-
ter the startingConstraint is true. An agent is no longer obliged to fulfill an
obligation if there is an associated dispensation freeing the agent from the
obligation.

– Conflicts can occur between permissions and prohibitions, obligations and
prohibitions, and obligations and dispensations. In order to resolve conflicts,
meta-policies that are used to correctly interpret policies. There are two
kinds of meta-policies namely setting the modality precedence (negative over
positive or vice versa) or stating the priority between rules within a policy
or between policies [8].

In a multi-policy environment, it is possible to state that one policy over-
rides another. For example, it is possible to say that in case of conflict the CS
department policy always overrides the Lait lab policy. As another example,
consider the CS department policy. Students are prohibited from using the
faculty printer but research assistants are permitted to. There is a poten-
tial conflict if a student is a research assistant and needs to use the faculty
printer. This can be solved by setting the priority between the rules and
stating that the permission overrides the prohibition.

rule1 : prohibition(X, print(X, facultyPrinter), student(X))
rule2 : permission(X, print(X, facultyPrinter),
researchAssistant(X)) overrides(rule2, rule1)

On the other hand, if a certain modality precedence is used, then when a
conflict occurs the rule with the preferred modality overrides the other. For
example, if positive modality is preferred then in case of conflict, permissions
and obligations will override prohibitions and obligations will override dis-
pensations. The conflict in the CS department policy in the earlier example
can also be resolved if positive modality is given precedence.

precedence(positive-modality)

– We also use some additional expressions to describe the sequence of message
that have been exchanged so far in an actual dialogue. The expression

received(X)

states that X was a message received and

sent(X)

states that X was a message that was sent.
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2.2 Conversation Specifications

Using the semantics of the deontic objects and domain actions and the syntax of
speech acts, we can model conversation specifications in agent communication
languages like Knowledge Query and Manipulation Language (KQML) [9] or
Foundation for Intelligent Physical Agents (FIPA) [5] as a set of permissions
and obligations on the sender or the receiver depending on the performatives
used thus far in the conversation.

As an example, we describe the QUERY-REF specification in FIPA.

– Speech acts used : QUERY-REF, REFUSE, AGREE, FAILURE, INFORM
– Sequence of messages : An agent sends a QUERY-REF message to another

agent. The latter can reply either with a REFUSE or an AGREE stating its
intent to either provide an answer or refuse to answer. Once an agent has
sent an AGREE, it is obliged to send an INFORM providing the information
required.
• Every agent has the permission to perform a QUERY-REF performative
permission(X, query-ref(X, Y, Proposition),_)

In the above expression, the constraint field is left empty to specify that
there are no constraints on the performing of a QUERY-REF performa-
tive.

• On receiving a QUERY-REF, the recipient has the permission to either
REFUSE the query or AGREE to provide the answer
permission(Y, refuse(Y, X, Proposition),

received(query-ref(X,Y, Proposition)))
permission(Y, agree(Y, X, Proposition),

received(query-ref(X,Y, Proposition)))

The constraint here is that the agent has received a QUERY-REF speech
act.

• Once an agent has accepted a QUERY-REF, it is obliged to answer to it
either with a FAILURE or with an INFORM and the agent is obligated
to the recipient of the agree message.
obligation(Y, failure(Y, X, Proposition),

sent(agree(Y, X, Proposition)), X, _)
obligation(Y, inform(Y, X, Proposition),

sent(agree(Y, X, Proposition)), X, _)

Other specifications are simpler like the FIPA PROPOSE interaction proto-
col.

– Speech acts used : PROPOSE, REJECT-PROPOSAL, ACCEPT-PROPOSAL
– Sequence of messages : An agent sends a PROPOSAL message to another

agent. The recipient can either use the REJECT-PROPOSAL or the ACCEPT-
PROPOSAL.
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• Every agent has the permission to perform a PROPOSAL performative
permission(X, proposal(X, Y, Proposition), _)

• On receiving a PROPOSAL, the recipient has the permission to either
reject the proposal or accept it.
permission(Y, accept-proposal(Y, X, Proposition),

received(proposal(X,Y, Proposition)))
permission(Y, reject-proposal(Y, X, Proposition),

received(proposal(X,Y, Proposition)))

The constraint here is that the agent has received a proposal speech act.

2.3 Policies

Policies like conversation, social, and privacy add restrictions on the performa-
tives that can be used, the content of the speech act, the receiver, time of the
message, etc. based on current attributes of the sender, receiver, content and all
other context of the conversation. They narrow what is allowed by and broaden
what is required by the conversation specifications. Policies can be defined at
two levels; one that is independent of the syntax and semantics of the commu-
nication language and the second that is tightly integrated with them. In the
latter case, the policies use the semantics of the performative and define con-
straints on how performatives can be used and under what conditions. Though
this may be true in the case of conversation policies, we generally assume that
policies like privacy, and social norms define restrictions at the higher level of
abstraction and provide restrictions on the general behavior of the agent. When-
ever these policies deal with information flow between agents, they need to be
translated into lower level policies using the semantics of the communication
language. For example, an agent’s privacy policy might state that the SSN must
not be disclosed. This is irrespective of the agent communication language be-
ing used or the specific performative. If FIPA is being used, the privacy policy
could be translated in our framework as ’The agent is prohibited from sending
an INFORM communicative act to any agent when the content involves SSN of
the agent’. However, if KQML is the language being used for communication,
the semantics specify that only the TELL is the only assertive performative that
causes the agent to reveal its belief about a proposition. In this case, the policy
could translate to ’The agent is prohibited from sending a TELL communicative
act to any agent when the content involves SSN of the agent’. Similarly, a social
policy can specify that an agent should not be rude. However, what it means
to be rude and how it translates into speech acts and their content depends on
the application domain. The agent would have to ensure that the effect of any
speech act does not violate this social policy.

Following from the first example dealing with the Medicare bill, it is evident
that there are several policies acting on an agent. This could lead to conflicts
between policies. Foster’s conversation specifications gave him the permission
to reply to requests, however, the agency head prohibited him from replying to
queries about the estimated cost of the Medicare bill. In Foster’s case, Scully’s
policy would be enforced if it was of higher priority than Foster’s other policies.
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2.4 Specification Language

Our policy language, Rei, is represented in OWL [7], which is a ontology lan-
guage. It includes logic-like variables to describe constraints over different aspects
of deontic objects, actions and policies. The use of variables allows Rei to repre-
sent a wider range of constraints than would be possible in OWL. We used logic
to describe the examples for ease of explanation and for conciseness. By using
OWL, Rei gains extensibility as different kinds of domain-specific knowledge in
RDF and OWL can be used for describing policies and specifications.

Our policy language is modeled on deontic concepts of permissions, prohibi-
tions, obligations and dispensations [10, 11]. We believe that most policies can
be expressed as what an entity can/cannot do and what it should/should not
do in terms of actions, services, and conversations, making our language ca-
pable of describing a large variety of policies ranging from security policies to
conversation and behavior policies. The policy language has some domain inde-
pendent ontologies but will also require specific domain ontologies. The former
includes concepts for permissions, obligations, actions, speech acts, etc. The lat-
ter is a set of ontologies, used by the entities in the system, which defines domain
classes (person, file, deleteAFile, readBook) etc. and properties associated with
the classes (age, num-pages, email).

The language includes two constructs for specifying meta-policies that are
invoked to resolve conflicts; setting the modality precedence (negative over posi-
tive or vice versa) or stating the priority between policies [12, 13]. As an example
of using priority consider a meta policy that states that in case of conflict the
Federal policy always overrides the State policy. When modality precedences are
used to resolve a conflict, the rule of the preferred modality overrides the other.

Another important aspect of the language is that it models speech acts like
delegation, revocation, request and cancel for modifying existing policies dynam-
ically. Delegations and revocations cause the permissions of agents to be mod-
ified, whereas requests and cancels affect the obligations. A delegation speech
act, if valid, causes a permission to be created. A revocation speech act nullifies
an existing permission (whether policy based or delegation based) of an agent.
An agent can request another agent for a permission or to perform an action
on its behalf. The former if accepted causes a delegation and the latter leads to
an obligation. An agent can also cancel any previously made request causing a
dispensation.

2.5 Policy Enforcement

Along with the specification of Rei, we have also developed a reasoning engine
in Flora1, which is an F-logic extension of XSB. The engine is built over F-OWL
[14], a reasoner for OWL and RDF, enabling Rei to understand and reason
over ontologies in both OWL and RDF. The engine reasons over policies, meta
policies, history of speech acts, and domain information to answer the following
types of questions :

1 http://flora.sourceforge.net.
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– What are the current permissions of X ?
The engine looks for all those permissions whose actor property unifies with
X and whose constraints are satisfied. If there is a conflicting prohibition
or revocation, the engine uses the meta policies to decide whether the per-
mission overrides the prohibition/revocation or vice versa. If the latter case
is true, the permission is not valid. If the permission is valid, the policy
engine checks the preconditions associated with the action over which the
permission is specified. The permission is returned only if the precondition
is satisfied.
The engine also looks for valid delegations from any agent to X. The delega-
tion is valid if the delegatee has the permission to make the delegation or has
been delegated the permission to make the delegation. The entire delegation
chain is checked by policy engine. At every level, the engine also checks that
there is no conflicting prohibition or revocation.

– What are the current obligations of Y ?
The engine locates all obligations whose actor property unifies with Y and
whose startingConstraint is satisfied but whose endingConstraint is false.
The engine ensures that there is no conflicting dispensation.

– Does X have the permission to perform action A or speech act S ?
This is similar to the first case, but in this case, the policy engine also checks
the action property of the permission and verifies that it unifies with A or
S.

– Does X have any permissions on a resource R ?
This is similar to the first case, but the policy engine also tries to unify the
target property of the action associated with the permission with R.

– When policy P is deleted, does agent X still retain the permission to use the
QUERY speech act for Proposition P ?
This is part of the policy analysis provided by Rei. The policy engine deletes
P but stores it in a temporary list. It then tries to verify that X has the
permission to use QUERY speech act over P. It returns the answer and then
restores P.

We envision that the reasoning engine will be used together with domain
knowledge like the mental state of the agents, the history of the speech acts
performed and other context by either a planning component or a workflow
component to enable enforcement of policies over agent communication.

Using the policy engine, our earlier example of the Medicare bill would be
inferred by Foster as

1. Received QUERY-REF from congressional Democrat enquiring about the
cost of the Medicare bill

2. What are my current obligations ? I am obliged to AGREE to answer by my
conversation work policy. I am also obliged to REFUSE the query that deal
with the cost of the bill by Scully’s policy.

3. As the meta policy states that Scully’s policy has the highest priority, I
use it.
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4. So, I REFUSE the query.
5. However, Do I have the permission to REFUSE a query ? Yes, from the

conversation specifications.

3 Example

We now walk through the Medicare bill example. We assume that the agent
communication language used is FIPA and both Foster and Scully share the
same conversation specifications. These specifications include the QUERY-REF
specification described in section 2.2.

– Foster has a work conversation policy that specifies that all government
employees should agree to all queries from congressional Democrats.

ConvPolicy :
obligation(X, agree(X, Y, Proposition),

(received(query-if(Y, X, Proposition)),
governmentEmployee(X),
congressionalDemocrat(Y)),
X, _)

obligation(X, agree(X, Y, Proposition),
(received(query-ref(Y, X, Proposition)),
governmentEmployee(X),
congressionalDemocrat(Y)),
X, _)

– Scully decides that Foster should not answer any queries from congressional
Democrats that ask about the estimated cost of the Medicare prescription
bill. This is a high level policy and could be translated in two ways; either
as an obligation to use REFUSE or a prohibition on INFORM.
1. It can be translated based on the syntax and semantics the FIPA ACL

as an obligation to refuse all queries about the estimated cost of the bill
from congressional Democrats.
TempPolicy :
obligation(foster, refuse(foster, Y,

estimatedCostOfBill(Cost)),
(received(query-ref(Y, foster,
estimatedCostOfBill(Cost))),
congressionalDemocrat(Y)),

scully, loseJob(foster))

2. It can also be translated as a prohibition from informing any congres-
sional Democrat about the estimated cost of the bill.
TempPolicy :
prohibition(foster, inform(foster, Y,

estimatedCostOfBill(Cost)),
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(received(query-ref(Y, foster,
estimatedCostOfBill(Cost))),
congressionalDemocrat(Y)))

However, we believe that the former interpretation matches the statement
made by Foster more closely, so we use it through the rest of the example.

– Scully gives this obligation policy higher priority than the existing conver-
sation policy.

overrides(TempPolicy, ConvPolicy)

– At some point of time, a congressional Democrat, Walter, sends a query to
Foster asking about the estimated cost of Medicare bill.

query-ref(walter, foster, estimatedCostOfBill(Cost))

– On receiving this speech act, Foster looks up the conversation specifications
for QUERY-REF, and finds that he can respond either with an AGREE or
REFUSE.

– Foster checks his work conversation policy, which states that he is obliged
to answer all QUERY-IF and QUERY-REF speech acts from congressional
Democrats with an AGREE.

– Foster then reasons over Scully’s policy that is of higher priority than his
work conversation policy. Scully’s policy states that Foster is obliged to refuse
all queries from congressional Democrats about the estimated cost of the
bill. As Scully’s policy is of higher priority and as the cost of violating the
policy involves Foster losing his job, Foster uses Scully’s policy and sends a
REFUSE to Walter.

refuse(foster, walter, estimatedCostOfBill(Cost))

4 Related Work

Cohen and Levesque model the cognitive state of agents and base allowable
speech acts on the cognitive states of collaborating agents [15]. In his earlier
work, Singh provides semantics for speech acts in terms of beliefs and intentions
of the agents [16, 17]. Fornara and Colombetti [18] describe an approach based on
the notion of social commitment. Labrou and Finin also describe the semantics
of KQML based on the beliefs and desires of agents [9]. These models are very
tightly coupled to the mental states of agents and the semantics of the language
that makes it difficult to extend them to work in different environments and
with different agent communication languages. Cost et al. [19] develop a model
using colored petri nets that can take into account various contextual proper-
ties and attributes. Greaves et al. define conversation policies as restrictions on
how the agent communication language is used [2]. Though the last approach is
similar to ours, we believe that conversation policies should be at a higher level
of abstraction and should not involve specifics of the communication language.
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We also propose that policies related to communication be translated into per-
missions and obligations that the agent has on specific speech acts supported by
the communication language being used.

Kollingbaum et al. discuss how normative agents estimate the effect of adopt-
ing a new norm[20]. The current beliefs, norms and the selected plan are taken
into consideration while estimating the level of consistency that will be brought
about by the adopted norm. This work approaches the adoption of norms (or
what we call policies) under the assumption that the agent can decide whether or
not to accept a norm. Though this is advisable for contracting agents, we believe
that certain policies are enforced by the environment and must be accepted by
the agent irrespective of whether they cause conflicts or inconsistencies in the
agent’s current state. Also, Kollingbaum’s approach does not try to resolve con-
flicts, it only categorizes the type of conflict in terms of consistency and uses
this information to decide whether or not to accept a new norm.

Broersen et al. use agent types to resolve conflicts between beliefs, obli-
gations, intentions and desires [21]. The agent types are determined by their
characteristics namely social (obligations overrule desires), selfish (desires over-
rule obligations), realistic (beliefs overrule everything else) and simple-minded
(intentions overrule obligations and desires). In our framework, conflicts basi-
cally occur between permissions and prohibitions, obligations and prohibitions,
and obligations and dispensations. In order to resolve conflicts, our framework
includes meta-policies namely setting the modality precedence (negative over
positive or vice versa) or stating the priority between rules within a policy or
between policies. Broersen et al. approach conflict resolution from the agent’s
point of view whereas we try to resolve conflicts in policies within the environ-
ment and not within agents themselves. We believe that Broersen’s approach
could be used by agents after conflict resolution is provided by our framework
as the enforced policies may conflict with the agent’s internal beliefs, desires,
intentions, obligations, prohibitions, and permissions.

5 Summary

The main goal of our work is to provide flexible and integrated control over
agent communication. Conversation specifications and policies are described as
permissions and obligations over different agent communication languages like
KQML and FIPA and different domain-specific information. Our framework al-
lows specifications to be described as a sequence of permitted and obligated
speech acts. Policies are described at a high level of abstraction and are trans-
lated into positive and negative permissions and obligations over speech acts
using the syntax and semantics of the agent communication language. These
permissions and obligations establish restrictions over performatives that can or
must be performed in terms of attributes of the sender, receiver, content and
other context of the conversation like time, and location.

Though we described all our examples in logic, our actual specification lan-
guage is in OWL, a web ontology language. Our language can be used to describe
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positive and negative permissions and obligations over speech acts in terms of
domain-specific information. We have developed a reasoning engine for our lan-
guage that reasons over domain knowledge, speech act semantics, protocols,
policies, and meta policies to answer questions about the actions and speech
acts that an agent can/must perform. We envision that this reasoning engine
will be integrated into the planning/workflow component of an agent to provide
policy enforcement over agent communication. As part of our future work, we
are looking into automating the translation process from high level policies to
performative-specific permissions and obligations. We are also interested in in-
tegrating work on commitments like that by Mallya et al. [22], which involves
reasoning over the status of obligations of agents, into our framework to provide
greater obligation management.

References

1. Flores, R., Kremer, R.: A Model for Flexible Composition of Conversations: How
a Simple Conversation got so Complicated. In: 3rd Workshop on Agent Commu-
nication Languages and Conversation Policies, M.P. Huget, F. Dignum and J.L.
Koning (Eds.), First International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2002), Bologna, Italy, July 15-19, 2002. (2002)

2. Greaves, M., Holmback, H., Bradshaw, J.: What is a conversation policy? In:
Autonomous Agents ’99 Workshop on Specifying and Implementing Conversation
Policies. (1999)

3. Phillips, L.R., Link, H.E. In: The Role of Conversation Policy in Carrying Out
Agent Conversations. Volume 1916 of Lecture Notes in Computer Science. Springer
(2000)

4. Kagal, L., Finin, T., Joshi, A.: Declarative Policies for Describing Web Service
Capabilities and Constraints. In: W3C Workshop on Constraints and Capabilities
for Web Services, Oracle Conference Center, Redwood Shores, CA, USA, W3C
(2004)

5. FIPA: Foundation for Intelligent Physical Agents Specifications. (http://www.
fipa.org)

6. Cable News Network (CNN): Probe under way on Medicare cost.
http://www.cnn.com/2004/ALLPOLITICS/03/17/medicare.investigation/ (2004)

7. W3C: OWL Web Ontology Language. http://www.w3.org/2001/sw/WebOnt/
(2004)

8. Moffett, J., Sloman, M.: Policy Conflict Analysis in Distributed Systems Manage-
ment. Journal of Organizational Computing (1993)

9. Labrou, Y., Finin, T.: A semantics approach for KQML – a general purpose
communication language for software agents. In: Third International Conference
on Information and Knowledge Management (CIKM’94). (1994)

10. Kagal, L., Finin, T., Joshi, A.: A Policy Language for Pervasive Systems. In: Fourth
IEEE International Workshop on Policies for Distributed Systems and Networks.
(2003)

11. Kagal, L., Finin, T., Joshi, A.: A Policy Based Approach to Security for the Seman-
tic Web. In: 2nd International Semantic Web Conference (ISWC2003), September
2003. (2003)

12. Lupu, E.C., Sloman, M.: Conflicts in Policy-Based Distributed Systems Manage-
ment. IEEE Transactions on Software Engineering (1999)



Modeling Communicative Behavior Using Permissions and Obligations 133

13. Lupu, E.C., Sloman, M.: Towards a Role Based Framework for Distributed Sys-
tems Management. Journal of Networks and Systemss Management, Plenum Press
(1996)

14. Zou, Y., Chan, H., Finin, T.: F-OWL: an Inference Engine for Semantic Web. In:
Third NASA-Goddard/IEEE Workshop on Formal Approaches to Agent-Based
Systems (FAABS III), 26-28 April 2004, Greenbelt MD. (2004)

15. Cohen, P.R., Levesque, H.J.: Intention is choice with commitment. In: Artificial
Intelligence. (1990)

16. Singh, M.: Towards a formal theory of communication for multiagent systems. In:
International Joint Conference on Artificial Intelligence. (1991)

17. Singh, M.: A semantics for speech acts. Annals of Mathematics and Artificial
Intelligence (1992)

18. Fornara, N., Colombetti, M.: Defining interaction protocols using a commitment-
based agent communication language. In: Second international joint conference
on Autonomous agents and multiagent systems, Melbourne, Australia pp 520-527,
2003, ACM Press. (2003)

19. Cost, R.S., Chen, Y., Finin, T., Labrou, Y., Peng, Y.: Using Colored Petri Nets
for Conversation Modeling. In: Agent Communication Languages, Frank Dignum
and Mark Greaves (editors), Springer-Verlag, Lecture Notes in AI, 2000. (2000)

20. Kollingbaum, M.J., Norman, T.: Norm consistency in practical reasoning agents.
(2003)

21. Broersen, J., Dastani, M., Hulstijn, J., Huang, Z., van der Torre, L.: The BOID
Architecture Conflicts Between Beliefs, Obligations, Intentions and Desire. (2001)

22. Mallya, A.U., Yolum, P., Singh, M.P.: Resolving Commitments Among Au-
tonomous Agents. In: International Workshop on Agent Communication Lan-
guages and Conversation Policies (ACL), Melbourne, July 2003, Springer. (2003)



Coherence Constraints for Agent Interaction

Joris Hulstijn1 , Frank Dignum2, and Mehdi Dastani2

1 Vrije Universiteit, Amsterdam
jhulstijn@feweb.vu.nl

2 Utrecht University,
{mehdi, dignum}@cs.uu.nl

Abstract. This paper describes the use of coherence constraints as a
means to regulate agent interaction. Coherence constraints describe re-
lationships between the content of utterances, and the context. They
can be used for example to express that an answer must refer back in a
meaningful way to the question that it answers. We also discuss several
possible ways in which the enforcement of coherence constraints can be
implemented in a multiagent system. Finally we describe a possible im-
plementation in the 3APL platform, which shows the feasibility of this
form of interaction regulation.

1 Introduction

In the field of agent communication languages we observe a trend from speci-
fying small dedicated interaction protocols towards specifications of flexible or
open protocols [12, 41, 29], which are more widely usable. Moreover, interaction
protocols tend to be viewed more as resources provided by an electronic insti-
tution in which the agents interact, than as fixed specifications attached to the
agents. One of the reasons for this last trend is that protocols are increasingly
studied in conjunction with the social organization that enforces them, and the
software infrastructure that enables them [14].

Most agent communication infrastructures are based on the standards devel-
oped by FIPA. FIPA has provided a standard for structuring messages [15] and
for simple interaction protocols [17]. The backbone of these standards is based
on speech act theory [3, 37]. Like other actions, speech acts can be combined into
protocols or plans to achieve a goal. The semantics of a speech act is commonly
given by the preconditions and intended effect on the mental state of an agent,
expressed using modal operators for belief and intention.

The FIPA standardization effort has been a relative success, although it has
been criticized heavily, e.g. [34, 40]. Here are two points of criticism.

1. It is impossible to verify the correct usage of a speech act, since for most
realistic multiagent settings the mental state of an agent is inaccessible.
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Agents may well be lying. This makes it impossible to verify protocols under
common assumptions regarding multiagent systems [40]. What is needed
instead is a semantics that is based on public information about what agents
are committed to, on the basis of what they have said.

2. Policies and protocols are often only defined in terms of speech act types, like
request, accept or reject. Protocol definitions are thus mainly concerned with
the form of interaction; nothing much is said about the content and function
of the messages. Thus agents may conform to the ‘letter’ of the protocol,
while not being coherent. What is needed is a way to extend protocols with
so called coherence constraints on the content of messages.

The second criticism can be countered by stating that constraints on the co-
herence of messages can only be given if a certain representation language for
the content of the messages is assumed. Because FIPA tries to remain as gen-
eral as possible it abstracts over the content language and thus the coherence
constraints cannot be expressed. Although this is true, we think that in many
cases the platform in which the agents interact can in fact put constraints on
the content of messages.

In general, interaction behavior is determined by a public protocol that offers
a repertoire of messages and rules to define what sequences of messages are
well-formed, and the strategy of individual participants to generate messages
and accept or reject messages from other participants. A protocol formalizes
conventional interaction patterns based on the underlying activity or application.
We believe that for many applications, coherence constraints are an essential
component of the protocol; they are conventional, just like the message order.

What we mean by coherence is illustrated by the following examples.

(1) propose(s, b, 40); propose(b, s, 30); propose(s, b, 35); propose(b, s, 20)

(2) cfp(a, b,price quote(shoes,x)); bid(b, a,price quote(soles,80))

Example (1) shows a simple type of concessive negotiation, loosely inspired by
the monotonic concession protocol [36]. Participants are supposed to make con-
cessions, until they reach agreement. The last bid of buyer b is incoherent, be-
cause it is not a concession with respect to the previous bid. Note that what
counts as a concession, depends on the content of the message, on the previous
messages and on the role of the participant. Example (2) concerns a call for pro-
posals. The example shows that coherence crucially depends on the background
knowledge that can be assumed for participants. The bid by b seems incoherent,
because it does not match the price quote for shoes that was called for. However,
if we suppose that it is commonly known that soles are parts of shoes, and that
therefore the price of shoes is partly determined by the price of soles, the bid
does count as a coherent, though partial, response.

First, we investigate in this paper the use of coherence constraints as a part of
the protocol definition. Because coherence constraints are a very general notion,
they can be used to define the order of message types as well as constraints on the
content of messages. One might thus use them both in addition to a traditional
protocol, and to replace it. In the second case the order of messages can be left
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more open. Similar to other declarative formulations, like commitments [41] or
landmarks, coherence constraints may specify the motivation behind a message
sequence. This produces more flexible protocols, that leave more decisions to
the strategies of the individual agents. Note however, that the issue of flexible
protocols is orthogonal to the use of coherence constraints.

Second, we investigate multiagent architectures to verify coherence constraints.
If the constraints are incorporated in the agents, compliance checking can be
done by the agents themselves. The interactions can also be verified by the plat-
form through which the communication takes place. The first option will, in
general, be more efficient, but places a heavy burden on the agents. The second
option is less efficient, but does not require agents to have additional reasoning
capabilities. We will discuss a number of solutions to this trade-off, and show
how they can be implemented using the 3APL platform [11], which provides a
development platform for the 3APL agent programming language [21].

The rest of the paper is structured as follows. In section 2 we introduce the
notion of coherence more fully. In section 3 we show how coherence constraints
can be used in combination with existing protocol descriptions. In section 4 we
describe a number of alternatives for the implementation of coherence checking
in the communication infrastructure, and illustrate it using the 3APL platform.

2 Coherence

We review the notion of coherence as used in linguistics. Intuitively, a discourse
(text or dialogue) can be called coherent when its parts ‘belong together’. Co-
herence has been studied in natural language semantics and pragmatics under
the header of discourse structure. There are many approaches, e.g. [10, 19, 39, 2].

Aspects of coherence that have to do with form are also called cohesion [20].
In natural language, cohesion shows by the use of a consistent vocabulary, a
consistent style and parallel syntactic constructions. The use of anaphora and
ellipsis to refer to objects mentioned earlier gives the impression of a coherent
discourse. Coherence is strongly related to topic structure. A discourse of which
the topics of the utterances are related, for example because they are subtopics,
makes a more coherent impression than a text with frequent topic shifts.

A common approach to analyze coherence is rhetorical structure theory [28].
The content expressed by an utterance is related to the previous discourse, by a
rhetorical relation, such as elaboration, explanation or contrast. Rhetorical rela-
tions are also called coherence relations. They are typically marked by adverbs
like ‘because’ (explanation), or ‘however’ (contrast). If no explicit or implicit
coherence relation can be found to link an utterance to the context, not even
the ‘neutral’ elaboration relation, the discourse can be said to be incoherent.
Coherence also relates to the purpose of utterances. For goal-directed discourse,
whenever an utterance contributes to the underlying goal of the discourse, for
example to convince the reader or explain something, this will increase the im-
pression of coherence. Goal-based notions of coherence are prominent in models
of misunderstanding [1].
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A so called discourse context is used to record the contributions of each of
the utterances to the over-all meaning of a discourse. We say that the context is
updated with the content of an utterance. Coherence relations help to determine
how the context must be updated with the content of an utterance. For example,
the content of an elaboration can be added straightaway, provided it is logically
consistent and does not already follow. But a contrast relation suggests that
there is a conflict with a previous utterance, and an explanation induces a causal
relation with an unexplained event.

Using a representation of the discourse context ‘C’ and a notion of update ‘+’,
the global notion of coherence can be reduced to a local notion of coherence, made
relative to the context. Although this simplification does not hold for discourse
in general, it does hold for the applications of multiagent interaction that we
have in mind.

1. An utterance U is coherent with context C iff a coherence relation R(U ′, U)
can be found that connects U with some existing part U ′ of C.

2. In this case, a new context C ′ = C + U is created which adds the content of
U to C in a way that depends on R(U, U ′).

3. A sequence of utterances U1, ..., Un is called coherent, iff each Uk is coherent
with context Ck−1, which represents the content of U1, ..., Uk−1.

This analysis also applies to dialogue. Coherence relations for dialogue are based
on the dialogue genre, like negotiation, persuasion or information exchange. For
example, Asher and Lascarides [2] analyze question-answer sequences in terms
of two coherence relations: iqap (indirect question answer pair) and q-elab
(question elaboration). The iqap relation expresses answerhood. Two utterance
representations U1 and U2 stand in relation iqap when U1 somehow triggers a
question, and U2 conveys information that counts as an answer to that question.
The q-elab relation expresses that asking a question should contribute to the
goals of the asker. So, two utterances U1 and U2 stand in relation q-elab when
U2 is a question of which the answers will help to achieve part of the apparent
goal suggested by U1.

For human dialogue, this pattern can be illustrated by the following exchange.
The response by B to the question in (3) is coherent, in case the asker is a
traveler with the apparent goal of catching a train to London. The utterances by
a and b stand in the iqap relation. Note that the additional information about
the platform is coherent too, even though it has not been asked explicitly. The
apparent goal of the asker can be inferred from the circumstances.

(3) a: When does the train for London leave?
b: in 2 minutes, platform 4.

The pattern seems to generalize to other goal-directed types of dialogue. An
initiative is coherent when the expected responses to that kind of initiative would
contribute to the apparent goal of the initiator, where the goal may be induced
from previous utterances, from the dialogue setting, or from the initiative itself.
A response is coherent when it contributes to resolving the problem or goal that
is suggested by the initiative.
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In computational linguistics, such reasoning about goals and ways to achieve
them has been formalized. Just like other actions, speech acts can be combined
into plans to achieve a goal. For dialogue, such plans are necessarily joint plans,
that involve contributions from various participants. Thus, Lochbaum [26] ap-
plies a theory of joint planning and action [18] to explain the structure of goal-
directed dialogues. An important aspect of such theories of joint planning and
action is the notion of a recipe. A recipe is a partial plan, known to the partici-
pants by convention. Recipes are basic building blocks, that help to coordinate
the actions in a joint plan. In records of natural language dialogue, we find
frequently re-occurring patterns of interaction, such as questions followed by an-
swers, or statements followed by acknowledgements. Such interaction patterns
can be analyzed as dialogue games [7]. Elsewhere we have argued that dialogue
games are a kind of recipes for joint action [23]. It is this kind of goal-based
analysis that inspires our account of coherence.

3 Protocol Definitions

In this section we demonstrate the possibility of expressing coherence constraints
as part of an agent communication protocol. Our protocol definitions are based
on the idea of a dialogue game as expressed by Mann [27] and McBurney and
Parsons [32], although we use a simplified terminology. Based on the notions
discussed so far we show how to define two simple dialogue games: information
exchange and concessive negotiation. These dialogue games are merely meant to
illustrate aspects of multiagent interaction. Although inspired by linguistics, they
are bound to over-simplify the complex aspects of coherence found in natural
language.

3.1 Dialogue Game Rules

Each dialogue game is defined by five sets of rules.

1. The initial context defines the circumstances under which the dialogue game
begins, including the expectations and commitments of the dialogue partic-
ipants upon entering the game.

2. The dialogue acts define the repertoire of messages. A dialogue act consist of
a dialogue act type (called performative by FIPA), a speaker, an addressee
and an expression that represents the content. For example, in dialogues for
information exchange we find inform(i, j, ϕ) and question(i, j, ψ). Here i
is the speaker, j is the addressee, ϕ is a proposition and ψ is an expression
that represents an issue: the semantic content of a question. In concessive
negotiation we find propose(i, j, ϕ) where ϕ represents an offer, for example
to about the price of a previously selected object.

3. Combination rules define under what circumstances a dialogue act is permit-
ted or not, or obligatory or not. These rules incorporate the feasibility and
sincerity preconditions of speech act theory. Combination rules implement
conventional interaction patterns. For example, questions must be followed
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by inform acts that count as answers. The combination rules also incorpo-
rate coherence constraints that specify, for example, that an answer must be
relevant to some question.

4. Update rules define the meaning of the content of each dialogue act in terms
of the changes to the commitment states of the participants. We write Ci +ϕ
to describe the result of updating agent i’s commitments with ϕ, where ϕ
may represent a proposition, an issue or an offer.

5. The end contexts define the circumstances under which a dialogue may end
successfully or unsuccessfully.

Note that the approach is similar to the levels distinguished by Prakken and
Sartor [35]. The logical level is concerned with the logical relations between the
content of messages, such as consistency or relevance, or the attack relation
between arguments in a dispute [13]. The dialectical level determines how moves
affect the commitments of the participants. At this level we put our update rules.
The procedural level is concerned with the way in which moves can be phrased,
and in what order. At this level we find the dialogue acts, and combination rules.
Coherence constraints are also placed at this level, but make use of the logical
level. Finally, there is a fourth orthogonal strategic or heuristic level, which is
concerned with the motivations of the agents themselves. Only in conjunction
with individual strategies does a protocol determine the course of interaction.

Our example dialogue games are interpreted relative to a dialogue context
C = 〈C1, ..., Cn, H, E〉. A dialogue context consists of the commitments Ci of all
participating agents i, along with a history H of all the acts that were uttered,
and an environment model E, that contains basic facts about the dialogue situ-
ation, such as time, location and information about the roles of the participants.

◦ −inform(i, j, ϕ); ack(j, i, ϕ) → ◦
| |

〈Ci, Cj , H, E〉 〈Ci + ϕ, Cj + ϕ, H; inform(i, j, ϕ); ack(j, i, ϕ), E〉

Fig. 1. Accepted inform act and corresponding update

Now consider for example an inform(i, j, ψ) act (Figure 1). By the principle
of sincerity, the inform commits the speaker to believing ϕ, so we must update
Ci. The actual beliefs of i are irrelevant; what matters are the beliefs that i
is committed to uphold on the basis of what was said. In other words: the
speaker must appear to be sincere. If we suppose that addressee j accepts the
information that ϕ, j is also committed to believe ϕ, so in that case we must
also update Cj . Else we leave Cj as it is. Acceptance can be signalled explicitly
by acknowledgement ack(j, i, ψ), or implicitly by a coherent continuation. More
about acknowledgements below. After any accepted utterance, the history H is
updated too.

The contents of a message are expressed in a first order language L. Based on
this content language, we define a dialogue language Ld. Note that the definition
of Ld is dependent on the specific dialogue game d.
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Definition 1 (Language). Let A = {i, j, . . .} be the set of agent names, Pd be
a set of dialogue act types for some dialogue game d, with α ∈ Pd and ϕ ∈ L.
Then Ld is defined as follows:

π ::= α(i, j, ϕ) | π; π′ | ε.

Intuitively, α(i, j, ϕ) means that agent i performs a dialogue act of type α towards
agent j with semantic content ϕ. Sequence π; π′ means that first π and then π′

should be done. Notation ε represents the empty sequence. The language can be
further extended to a full protocol definition language, with for example if-then-
else constructs, while-loops, or deadlines. An example of such constructs can be
found in AUML [4]. For multiparty dialogue, j can be replaced with a set of
addressees.

3.2 Information Exchange

Current theories of information exchange in natural language semantics assume
that a dialogue context involves the issues under discussion [23, 25], in addition
to the factual information being exchanged. Therefore, for each agent we record
the issues it is apparently interested in, as well as the information it is committed
to uphold, based on what has been said.

Definition 2 (Dialogue Context - Information Exchange). For each
agent i ∈ A, let the commitment state be a tuple Ci = 〈Si, Ii〉, where Si is
a set of closed formulae representing the information to which i is committed,
and Ii is a set of formulae representing the issues to which i is committed.

Let history H be a sequence of dialogue acts, represented by a formula
from Lp.

Let environment E be a set of ground formulae (no variables), representing
basic facts about the dialogue situation. We can demand E ⊆ Si for all agents i,
in which case the environment is part of the common ground of the agents, but
this assumption is not necessary.

Now a dialogue context between agents A = {1, ..., n}, denoted as C, is an
n-tuple consisting of the commitment states of the individual agents, the history,
and the environment: C = 〈C1, . . . , Cn, H, E〉.

The following update definitions are rather straightforward. We restrict our-
selves to Pinf ex = {inform, question}. Since π can be a complex expression,
we define C + π in a compositional way.

Definition 3 (Update - Information Exchange). Let C = 〈C1, ..., Cn, H, E〉,
i, j ∈ A , ϕ ∈ L and π, π1, π2 ∈ Linf ex. Then an update C + π is defined as
follows:
C + inform(i, j, ϕ) = 〈〈Si ∪ {ϕ}, Ii〉, 〈Sj ∪ {ϕ}, Ij〉, H; inform(i, j, ϕ), E〉
C + question(i, j, ψ) = 〈〈Si, Ii ∪ {ψ}〉, 〈Sj , Ij ∪ {ψ}〉, H; question(i, j, ϕ), E〉
C + π1; π2 = (C + π1) + π2
C + ε = C
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Relative to the issues recorded in the commitment states of an agent, a restricted
notion of relevance can be defined [23]. A proposition is relevant when it partly
resolves one of the issues in the context. Issues are represented here by first order
formulas, possibly containing free variables, similar to Prolog queries. We say a
formula ϕ resolves an issue ψ relative to a set of formulas S, in case there exists
an assignment θ of variables to constants, such that S, ϕ |= ψθ. An issue ψ itself
is relevantI , whenever its resolution will resolve some other, more embedded,
issue χ. Other definitions are quite possible. For example, we may stipulate that
all questions are relevant. Note that we can not define relevance of questions by
referring to the goals of the asker, since we only have access to what was said.

In our restricted version of information exchange, we demand that a con-
tribution to an information exchange must also be informative and consistent.
Consistency is the usual notion. A proposition is considered informative, when
it is not already derivable from previous commitments; likewise for an issue. A
fourth restriction, that information should not be over-informative, is left out
for simplicity. Although these constraints roughly correspond to the maximes
of Grice, they do not necessarily assume that agents are cooperative; they just
require that agents behave as if they are cooperative.

In general we use notation coherent(d, C, π) to denote that dialogue π of
type d is coherent in dialogue context C. Again, it is defined compositionally.

Definition 4 (Coherence - Information Exchange). Let C be a dialogue
context, π1, π2 ∈ Linf ex and i, j ∈ A and ϕ ∈ L. Then, coherent(inf ex, C, π)
is defined as follows:

coherent(inf ex, C, inform(i, j, ϕ)) ⇔
consistent(Ci, ϕ) & (consistent for speaker)
relevant(Cj , ϕ) & (relevant for addressee)
informative(Ci, ϕ), & (informative for both)
informative(Cj , ϕ),

coherent(inf ex, C, question(i, j, ψ)) ⇔
relevantI(Ci, ψ) & (relevant for speaker)
informativeI(Ci, ψ), & (informative for both)
informativeI(Cj , ψ),

where for x ∈ {i, j}
consistent(〈Sx, Ix〉, ϕ) iff Sx, ϕ �|= ⊥
relevant(〈Sx, Ix〉, ϕ) iff there is a ψ ∈ Ix and Sx, ϕ |= ψθ, for some θ
relevantI(〈Sx, Ix〉, ψ) iff there is a χ ∈ Ix and Sx, ψ |= χ i.e. for all θ
informative(〈Sx, Ix〉, ϕ) iff Sx �|= ϕ
informativeI(〈Sx, Ix〉, ψ) iff Ix �|= ψ

coherent(inf ex, C, π1; π2) ⇔ coherent(inf ex, C, π1) &
coherent(inf ex, C + π1, π2)

coherent(inf ex, C, ε) ⇔ �
An information exchange presupposes a so called information potential : there is
some issue that the ‘novice’ is interested in, and that it expects to be known by
the ‘expert’. Unfortunately, we can only use public commitments; not the real
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interests of the agents, so we cannot express this constraint in the initial context.
Therefore we have the following rather weak definition of an initial context.

Definition 5 (Initial Context - Information Exchange). Let A = {i, j}
be the participants. Let ε be the empty formula and E0 the initial environment,
then C0 = 〈〈∅, ∅〉, 〈∅, ∅〉, E0, ε〉 is the initial state of an information exchange.

Termination of an information exchange means that all issues are resolved.

Definition 6 (End context - Information Exchange). Let A = {i, j} be
the participants, then C+ = 〈〈Si, Ii〉, 〈Sj , Ij〉, E, H〉 is a successful end context
of an information exchange, iff C0+H = C+, and coherent(inf ex, C0, H) and
for all ψ ∈ Ii ∪ Ij , Sj |= ψθ or Si |= ψθ, for some assignment θ.

3.3 Information Exchange with Grounding

The definitions above do not account for the fact that the speaker’s commitments
may differ from the addressee’s commitments, for example in case the addressee
does not accept some information. Let us try to take ‘grounding’ into account [9].
Grounding is the process of acknowledgement by which the content of utterances
is added to the common ground. An update by the addressee will only take place
after an utterance has been accepted. Acceptance is either signalled explicitly
by an acknowledgement, or implicitly by a coherent continuation. Although in
general the grounding process is very complex, both for human and artificial
languages1, our model can account for a simplified version of it. The trick it is
to put constraints on the latest contribution to the dialogue history.

Suppose that acceptance of an inform act inform(i, j, ϕ) is expressed by
an acknowledgement ack(j, i, ϕ). An inform act that is not (yet) acknowledged
is added to the speaker’s commitments and to the history, but not (yet) to
the addressee’s commitments. Note that inform acts also function as a kind of
acknowledgement to a question.

Definition 7 (Update - Information Exchange with Grounding). Let
C = 〈C1, ..., Cn, H, E〉, i, j ∈ A , ϕ ∈ L and π, π1, π2 ∈ Linf ex′ . Then an update
C + π is defined as follows:
〈〈Si, Ii〉, 〈Sj , Ij〉, H, E〉+ inform(i, j, ϕ) =

〈〈Si ∪ {ϕ}, Ii〉, 〈Sj , Ij〉, H; inform(i, j, ϕ), E〉
〈〈Si, Ii〉, 〈Sj , Ij〉, H; inform(i, j, ϕ), E〉+ ack(i, j, ϕ) =

〈〈Si, Ii〉, 〈Sj ∪ {ϕ}, Ij〉, H; inform(i, j, ϕ); ack(i, j, ϕ), E〉
〈〈Si, Ii〉, 〈Sj , Ij〉, H, E〉+ question(i, j, ϕ) =

〈〈Si, Ii ∪ {ϕ}〉, 〈Sj , Ij〉, H; question(i, j, ϕ), E〉
〈〈Si, Ii〉, 〈Sj , Ij〉, H; question(i, j, ϕ), E〉+ inform(i, j, ψ) =

〈〈Si, Ii〉, 〈Sj ∪ {ψ}, Ij ∪ {ϕ}〉, H; question(i, j, ϕ)inform(i, j, ϕ), E〉
C + π1; π2 = (C + π1) + π2
C + ε = C

1 Think of the handshake logic in internet protocols like TCP.
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Obviously, the definition of coherence would have to be extended in a similar
way to accommodate interaction patterns for acknowledgement. This is an issue
for further research.

3.4 Concessive Negotiation

A concessive negotiation is a rather restricted type of dialogue. It is inspired
by the monotonic concession protocol, which has been studied extensively, see
for example [36]. We assume that participants are making bids that refer to an
object, of which it has previously been decided that one agent, the buyer, wants
to buy it and that the other agent, the seller, wants to sell it. In this version,
we let Pco neg = {propose} and we require that the content of all messages is of
the form price(x) where x is a positive amount.

For the dialogue contexts, we just re-use definition 2, although we do not use
the issues. Note that we could have left out the commitment states altogether;
all work can be done by the history. That would also remove the need for up-
date rules. But as soon as we allow versions of the protocol with exceptions, or
decommitment, we must record commitments separate from history.

Definition 8 (Dialogue Context - Concessive Negotiation).
Identical to definition 2.

The main coherence relation is that of a bid being a concession. In this restricted
version, a concession means a lower price for the seller, and a higher price for
the buyer. Obviously more interesting definitions of a concession exist for less
well-defined domains, such as tasks in a household:

(4) A. Can you put the garbage out?
B. Only if you will do the dishes.

In both cases, a concession means that a proposal is made which is less preferred
than the previously made proposals, where the preference order is partly related
to the role (buyer, seller) and partly to personal preferences. So to be coherent,
an offer must fit the expected preferences belonging to the role of the speaker.

Note that unlike information exchange, negotiation does not involve logical
consistency of commitments, since each price is strictly speaking inconsistent
with previously mentioned prices. Informativeness follows from concession, which
is a much stronger notion. Relevance would also follow from concession, if each
agent were interested in the issue price(x), i.e. what price is going to be paid.

Definition 9 (Coherence - Concessive Negotiation). Let A = {b, s} with
x, y variables ranging over A and C = 〈Cb, Cs, H, E〉, such that E |= buyer(b)∧
seller(s), then define:

coherent(co neg, C, propose(x, y, price(u))) ⇔
fits role(C, x, price(u)) &
concession(C, x, price(u)).

coherent(co neg, C, π1; π2) ⇔ coherent(co neg, C, π1) &
coherent(co neg, C + π1, π2)

coherent(co neg, C, ε) ⇔ �
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where
fits role(〈Cx, Cy, ε, E〉, x, price(u)) ⇐ �
fits role(〈Cx, Cy, π, E〉, x, price(u)) ⇐

E |= buyer(x) ∧ seller(y) & Cy |= price(v) & u ≤ v.
fits role(〈Cx, Cy, π, E〉, y, price(v)) ⇐

E |= buyer(x) ∧ seller(y) & Cx |= price(u) & u ≤ v.
and
concession(〈Cx, Cy, ε, E〉, x, price(u)) ⇐ �
concession(〈Cx, Cy, π, E〉, x, price(u)) ⇐

E |= buyer(x) & Cx |= price(u′) & u′ < u.
concession(〈Cx, Cy, π, E〉, y, price(v)) ⇐

E |= seller(y) & Cy |= price(v′) & v < v′.

The update rules are again rather straightforward. Each bid replaces the previous
ones. This illustrates that updates do not have to be monotonic.

Definition 10 (Update - Concessive Negotiation). Let A = {b, s}, with
x, y variables ranging over A, and C = 〈Cb, Cs, H, E〉, then define

C + propose(x, y, price(v)) =
〈〈(Sx \ {price(u)}) ∪ {price(v)}, Ix〉, H; propose(x, y, price(v)), E〉

C + π1; π2 = (C + π1) + π2
C + ε = C

In the initial context, no agent has made a bid yet.

Definition 11 (Initial Context - Concessive Negotiation). Let A = {b, s}
and E0 |= buyer(b)∧seller(s), then C0 = 〈〈∅, ∅〉, 〈∅, ∅〉, ε, E0〉 is an initial state
of a concessive negotiation.

At the end contexts, an agreement about the price must have been reached.

Definition 12 (End Context - Concessive Negotiation).
C+ = 〈〈{price(u)}, ∅〉, 〈{price(v)}, ∅〉, H, E〉 is a successful end state of a con-
cessive negotiation, iff u = v, C0 + H = C+, and coherent(co neg, C0, H).

3.5 Dispute and Commissive Dialogues

The approach can be extended to dispute. In that case, the semantic attack
relation [13] is the main ingredient used in coherence constraints.

Although we believe the approach would also work for dialogues that produce
commitments, i.e. accepted requests, accepted proposals, and closed negotiations
and deliberation in general, it is currently an open problem how to formalize the
fulfillment relation for commitments, that would be the main candidate as a se-
mantic relation underlying coherence for such dialogues. Under what conditions
can we say a commitment has been fulfilled, or a promise has been kept? This
will be left for further research.
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4 Coherence in Agent Interaction

Several communication infrastructures for multiagent systems have become avail-
able [11, 5, 22], some of which conform to the FIPA recommendations [16]. Many
of these systems provide a message passing mechanism that ensures messages are
delivered, provided they are addressed using the right identifier. Alternatively,
we may assume a shared data space with coordination mechanisms to regulate
communication [8, 33].

4.1 Approaches to Coherence Validation

Given an agent communication platform, how can violations of coherence con-
straints be detected and reported? We discuss some possible architectures.

1. By a central director agent, that controls the interaction. An example is
the role of an auctioneer in an auction. The auctioneer will only recognize
well-formed and coherent bids. Another example is the role of a chairman in
a meeting, that assigns turns, manages speaking time and sets the topic for
each speaker. In case of violations, a director has the authority to sanction
the violator, for example by banishment from the group.

2. By connecting each agent to an individual governor agent, as in ISLANDER
[14]. The governor provides an API-like interface that allows an external
agent to interact with other agents in the system and with the environment.
The interface works as a filter: potential violations are simply blocked.

3. By getting each participant individually to play the role of a governor, and
decide whether or not to accept messages. Incoherent or non well-formed
messages are either ignored or explicitly rejected. One might say that in this
case the protocol has been reduced to the message layer, and that all the
work is now done by the strategy of the individual agents. In other words:
rejecting a message has become a strategic action. Note that this solution
puts a heavy requirement on the knowledge and reasoning capabilities of an
agent. Each agent should know the protocol, be able to detect violations, and
decide whether it is more beneficial to reject a message, or leave incoherencies
unnoticed and maintain good relations with the speaker.

4. By means of a hybrid approach, in which a mediator agent monitors the
interactions to detect and report violations as they occur. Such a media-
tor agent can have the same knowledge and reasoning capacities as other
agents in the environment; it needs no special privileges except for access
to the messages. The protocol can be made accessible on the platform, so
all agents know how to behave. The advantage of having a mediator, is that
the agents do not require a complex violation detection mechanism. With
respect to violations, several different sanction policies can be devised. For
example, the mediator can suffice with sending all affected agents a violation
report. Agents can then decide a sanction for themselves, e.g., to abandon
the interaction, put the violator on a black list, or continue after all. Alter-
natively, the mediator might request the agent management system to have
the agent removed from the platform, or be banned for future occasions.
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In the remainder of this section we explore the last option. The general set up
of a mediator in a platform, is depicted in figure 2.

But before we can explain the implementation of a mediator, we first need
to be more specific about the agent platform. We take the 3APL agent platform
as an example; the approach is also possible in other platforms.

4.2 Agent Platform

Figure 3 shows an overview of the 3APL agent platform, which follows FIPA
recommendations [16] and is therefore rather general. Such a platform provides
communication and coordination facilities, access to knowledge sources, and a
way of mediating between different agents. Many of these facilities are accessed
through the agent management system (AMS) which also controls entry and exit
of agents on the platform.

In the case of 3APL, the platform can also be used to assist programmers
during development. A graphical user interface (GUI) enables the programmer

Agent
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to load agents from a library, implement and execute them, and observe their
behavior.

Individual Agents. Figure 4 shows an example of a 3APL agent program. 3APL
closely follows the BDI paradigm. It contains a goal base, and a belief base.
These constructs together represent an agent’s mental state throughout the ex-
ecution of the program. The belief base is currently implemented using a Prolog
interpreter. It allows one to reason, and match queries to beliefs. The agents
capabilities are of the form {Pre}Capability{Post}, where both Pre and Post
are formulas representing beliefs. A program transforms the mental state by
means of a number of practical reasoning rules. These rules generally are of the
form Goal ← Guard | Body, where the guard is a test on the belief base. The
body contains goals, capabilities or combinations of these using sequence, while,
if-then-else or a test. A test succeeds if a Prolog query to the belief base suc-
ceeds. By sending and receiving messages, facts of the form sent or received
are added to the belief base.

Shared Knowledge File. For some applications, an agent needs general back-
ground knowledge or skills. Therefore an external Prolog file can be loaded. The
agent behaves as if the clauses in the Prolog file are part of its personal belief
base. This facility is used to distribute the protocol and make the coherence
relations accessible to all agents, including the mediator.

Communication Management. The 3APL agent platform provides communica-
tion by means of message passing. A message will be delivered by the message
layer, provided the agent management system knows the identifier of the agent
being addressed. The messages themselves have the structure of speech acts, with
a sender, receiver and a content, which is compliant with the FIPA standards
for agent communication [15].

4.3 Mediator

A 3APL template for a mediator agent is shown in figure 4. This version applies
a simple message driven monitor-detect-report loop. For each message that is
sent on the platform, a copy is sent to the mediator. The mediator maintains
a list of interaction sessions, containing a representation of the context with
a message history, the particular dialogue game, the participating agents and
their roles. The session list is matched against the incoming message. Based on a
classification procedure, the mediator decides which protocol may be applicable.
The classification is based on the set of dialogue acts that may occur in a certain
dialogue game, but also takes the current participants into account. Because
one dialogue act type can occur in several protocols, there may be a list of
several candidate sessions. When possible, the message identifier and the session
identifiers are used to speed up this matching process.

If the mediator can match the incoming message to one of the candidate
sessions such that it makes a coherent contribution, the message is stored as part
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PROGRAM "mediator"

LOAD "H:\protocol.pl" \\ classify\2, update\2, coherent\3, sanction\3

CAPABILITIES: {session(SID, DialGame, As, C)} Store(C1)
{NOT session(SID, DialGame, As, C), session(SID, DialGame, As, C1)},

{} StoreViolation(Message,Session) { violation(Message, Session) }
\\ ...

BELIEFBASE:
\\ example of a session fact, with (C_harry, C_sally, Hist, Env)
\\ session(023,info_exch,[harry,sally],
\\ c(c_harry([],[dep_time(kl108,?Time)]),c_sally([],[]),
\\ [m(023,harry,[sally],question,dep_time(kl108,?Time))],[ams, 9:34]))

GOALBASE: monitor_detect_report(),sanction()

RULEBASE: monitor_detect_report() <- received(Id,Sender,Addrs,Perf,Phi) |
BEGIN // monitor

classify( m(Id,Sender,Addrs,Perf,Phi), DialGames)?;
member(DialGame, DialGames)?;
session(SID, DialGame, As, C)?;
IF member(Sender,As) AND subset(Addrs, As) AND // detect

coherent(DialGame, C, m(Id,Sender,Addrs,Perf, Phi))
THEN

BEGIN
update(DialGame, m(Id,Sender,Addrs,Perf,Phi), C, C1)?;
Store( C1 );

END
ELSE

BEGIN // report
Send(99, [Sender|Addrs], announce,

violation( m(Id,Sender,Addrs,Perf,Phi),
session(SID, DialGame, As, C)));

StoreViolation( m(Id,Sender,Addrs,Perf,Phi),
session(SID, DialGame, As, C))

END
END,

sanction() <- violation(Message,Session) |
BEGIN

sanction_policy(Message, Session, Sanction)?;
execute(Sanction) // to be filled in

END.

Fig. 4. 3APL template for a mediator agent
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of that session. If no such match can be made, the message is deemed incoherent.
In that case the mediator sends a so called violation report to all participants
involved: the violator and the addressees of the message. The violation report
contains references to the message and the session. Violations are also stored for
later reference. Based on a sanctioning policy, further action may be initiated.
A slot for such action is indicated in the template.

5 Related Research

The idea that a protocol should be seen as a resource, rather than as a fixed
given entity, is implicit in work on skeleton programming [38]. Here, agents are
generated on the basis of protocol definitions, using so called skeleton programs.
Only agent specific details, such as the strategy, will need to be filled in by
the programmer. Architectures that allow validation of protocols are becoming
more and more common. See for example [29] for an approach that uses open
protocols, expressed in Petri Nets. As far as we know, we are the first to propose
protocol validation as a service provided by the communication platform.

With respect to coherence conditions, work from linguistics lies outside the
scope of this paper. We refer to our favorite information state approach [2, 25]
for more information. There is little work on semantic relations in the context
of agent communication. An interesting exception is the work by McBurney and
Parsons [31] on scientific investigation. They describe a risk agora, as they call
it, that allows the storage of multiple arguments for and against some claim.
Another example is their recent work on deliberation dialogues [30].

Finally, the different ways in which protocols can be enforced, is reminiscent
of work on normative systems and the enforcement of policies [6]. A recent and
very interesting development, is the design of specific policy languages. The idea
is that the behavior of agents is influenced by a myriad of policies, based on
the various groups and social contexts that they are part of. These policies
may concern interactive behavior, as in our dialogue games, but they may also
relate to other kinds of norms, permissions or expectations. Because policies
may conflict, specific meta policies exist to resolve such conflicts. This requires
that agents reason about policies, which must therefore be expressed in some
declarative form [24].

6 Conclusion

We have proposed a way to formulate coherence constraints on the content of
messages in agent communication protocols, in addition to the usual syntac-
tic constraints. The notion is inspired by linguistic research. Protocols of two
kinds of dialogue types, information exchange and concessive negotiation, can
be reformulated in terms of coherence constraints.

We have discussed several ways in which coherence checks can be imple-
mented in an agent communication infrastructure: using a central director, a
governor for each individual agent, by the agents themselves or by means of a
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mediation service provided by the platform. An architecture using a mediator,
is presented in detail. The approach is illustrated using the the 3APL commu-
nication infrastructure.

The design is currently being implemented in the 3APL platform. Experi-
ments for empirical evaluation of the approach are envisioned.

With respect to the two criticisms raised against the FIPA approach in the
introduction, we may conclude the following.

1. A mediator agent with similar capabilities and privileges as other agents,
turns the semantics of the speech acts and protocol into a public affair, and
removes the necessity of accessing the mental states of agents.

2. Coherence constraints make it possible to specify protocols in terms of the
content and semantics of messages, and not just their syntax.

The proposals in this paper must be seen as extensions to the FIPA standards,
which can be incorporated in an agent communication infrastructure that allows
the kinds of reasoning needed. The article is not meant to criticize the FIPA
standards as such.
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Abstract. Although several approaches to the semantics of agent communica-
tion have been proposed, none of them is really suitable for dealing with agent
autonomy, which is a decisive property of artificial agents. This paper introduces
an observation-based approach to the semantics of agent communication, which
combines benefits of the two most influential traditional approaches to agent com-
munication semantics, namely the mentalistic (agent-centric) and the objectivist
(i.e., commitment- or protocol-oriented) approach. Our model makes use of the
fact that the most general meaning of agent utterances lays in their expectable con-
sequences in terms of agent actions, and that communications result from hidden
but nevertheless rational and to some extent reliable agent intentions. In this work,
we present a formal framework which enables the empirical derivation of commu-
nication meanings from the observation of rational agent utterances, and introduce
thereby a probabilistic and utility-oriented perspective of social commitments.

Keywords: Agent Communication Languages, Open Multiagent Systems, Com-
putational Autonomy, Stochastic Processes, Artificial Sociality.

1 Introduction

Currently, two major approaches to the meaning of agent communication in a broader
sense, covering both traditional sentence-level semantics and pragmatics, exist. The
mentalistic approach (e.g. [5, 6]) specifies the meaning of utterances by means of a de-
scription of the mental states of the respective agents (i.e., their beliefs and intentions,
and thus indirectly their behavior), while the more recent commitment-based objectivist
approaches (e.g. [3, 15], also called social semantics) try to determine communication
from an external point of view, focussing on public rules and inter-agent contracts. The
former approach has some well-known shortcomings, which eventually led to the de-
velopment of the latter: Especially in open multiagent systems, agents appear more or
less as black boxes, which makes it in general impossible to impose and verify a se-
mantics described in terms of agent cognition. They could only be put into practice
making simplifying but unrealistic assumptions to ensure mental homogeneity among
the agents, for example that the interacting agents were benevolent and sincere, and it
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neglects the social context of utterances. Objectivist semantics in contrast is fully ver-
ifiable, it achieves a big deal of complexity reduction through limiting itself to a small
set of normative rules, and has therefore been a significant step ahead. But it oversimpli-
fies social processes, and it doesn’t have a concept of meaning indefiniteness, rational
attitude (but see [4] for an objectivist approach to modeling the “intuitive” meaning
of speech acts) and agent malevolence. In contrast to these approaches, we propose a
semantics which is based on the assumption that the meaning of utterances lies basically
in their consequences in terms of expectable future agent actions and other events which
can be continuously learned and adapted from observed communications [8, 9]. These
consequences are represented as probabilistic Social Interaction Structures, which are a
variant of Expectation Networks [8, 11], and they are learned from ongoing communi-
cation processes by a semantics observer that can be either an agent participating in the
communication himself, or an external agent (e.g., a special middle agent, or a super-
vision facility [13] of the system designer or application users). This learning task puts
two general assumptions about agent communication into practice: i) observed agent
interactions within a certain social context are likely to reoccur in similar situations in
the future (empirical stationarity assumption), and ii) agents act individually but more or
less rationally towards their communicated goals within a limited sphere of communica-
tion (limiting their commitments’ trustability and the predictability of other behavioral
characteristics). Therefore, the semantics observer deals with the “intentional stances”
[2] of otherwise opaque agents towards their communicated goals and believes (learned
empirically from observed utterances) rather than with real “cognitive agents”. From
these assumptions, we retrieve the following replacements for traditional semantical
concepts:

– Verification of semantics according to normative rules as in social semantics →
Verification regarding a learned empirical model of observed agent communication
processes

– Assumption of a certain mental agent architecture and cognition→ revisable, prob-
abilistic expectation of bounded rational behavior (the so called rational hulls of
communications)

– Social commitments and agent sincerity → revisable, probabilistic expectation of
the limited maintenance of communicated goals by the uttering agents

For lack of space, and in order to provide a general, flexible approach, we do not make
use of a concrete ACL in this work. Instead, we propose the dynamic semantics of so-
called Elementary Communication Acts (ECAs) which obtain their concrete meaning
not from some pre-defined speech-act typology as usual, but from their usage context.
The theoretical assumption behind ECAs is that all kinds of speech acts can be translated
into one or more demands to act in pragmatical conformance with a declared course of
events (a certain probability distribution of events in the future), in which each ECA
can be contextualized with companion social structures resulting from other ECAs to
clarify and get accepted the demand (e.g. sanctions). E.g., an assertive act is the request
to communicate in conformance with the expressed belief from now on, a command is
a request to perform the described actions in order to reach the declared future world
state, accompanied with norms and the threatening with sanctions, and the utterance
of a performative sentence is also an assertive act which demands to communicate as
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if the proposed (social) consequences this act “makes true” were/would become true
in fact. ECAs are represented as pointers to demanded and otherwise rather unlikely
world states within some assumably shared world knowledge represented as a so-called
Expectation Network. Thus, the abstract a priory semantics of ECAs (in contrast to
their full meaning which is derived empirically at run-time) can be considered to be
the low-level replacement of both traditional a priory sentence semantics (concerned
with the propositional content of messages, based on an assumably shared ontology
with a semantics given as truth-conditions) and speech act types. In contrast, the “full
semantics” of an actually uttered ECA is the probability distribution of expected future
events triggered by this utterance.

The remainder of this paper is organized as follows: The next section introduces our
novel approach to ACL semantics and pragmatics. Section 3 defines Expectation Net-
works as the data structure used to describe agent communication semantics empirically.
Section 4 provides a formal learning and adaptation framework for social (i.e., commu-
nication) structures, and finally, section 5 draws some conclusions regarding current
limitations of our approach and future work.

2 A Novel Approach to the Modeling of Communication

In this section, we provide an informal overview of our approaches called Empirical
Agent Communication Semantics [8, 9, 10] and Empirical-Rational Agent Communica-
tion Semantics [12] in order to motivate the formal framework presented in the following
sections.

In its most general sense, the semantics1 of agent communication describes the effect
a single communication has in the context of / on its environment. Both the context and
the effect can include / affect every changeable aspect of the uttering agents’ environ-
ment and the agent itself, e.g. agent cognition, other communications, social structures,
the “physical” environment, the mental dispositions of the uttering and other agents.
Having knowledge about the semantics of agent communication has several obvious
advantages, both for the agents (active and passive) and the designer of the agent-based
application. Since for truly autonomous black-box agents, every kind of meaningful in-
teraction can be expressed in terms of symbolic, rejectable communications only [1, 8]
(in contrast to the direct influencing of agents through physical actions or commands),
agent communication semantics covers every aspect of socially relevant behavior, from
social mechanism design (e.g. auctions) and game theory to large artificial societies.

2.1 Demands and Issues

Traditionally, the comprehensive semantics mentioned above is assumed to have two
dimensions that need to be covered by a comprehensive approach to the semantics of
agent communication: First, the sentence level, which is the aspect of meaning that is

1 If not stated otherwise, we use the term "semantics" in the computer scientific sense, not as a
linguistic term. Linguists would talk about "meaning" instead, covering both linguistic sentence
semantics and pragmatics.
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traditionally subject of linguistical semantics. This aspect of meaning is contextualized
with an environmental description in the form of an assumably (not necessarily actu-
ally) shared ontology (maybe requiring the alignment of individual ontologies [14]). In
addition, a calculus to describe objects and events within the environment the respective
utterance refers to has to be provided, for example predicate logic and temporal modal-
ities. The second dimension of meaning is its pragmatics, i.e., the actual use and effect
of utterances in social encounters. Contemporary approaches to agent communication
language (ACL) semantics go pretty far in their claimed area of coverage, since they
attach either far-reaching mentalistic or social-normative assumptions to singleACL sen-
tences. This leads to a mixture of traditional sentence-level semantics and pragmatics.
Even though also sentence-level semantics largely depends from use-dependant contex-
tual information, required e.g. for the resolution of anaphora, most linguists carefully
prevent the mixing of (socio-)pragmatic issues and sentence-level semantics. In con-
trast, most approaches to ACL semantics are in fact "pragsemantics" since they include
elements which traditionally belong to pragmatics, mostly borrowed from speech-act
theory and socio-normative theories. In principle, there is nothing wrong with such an
hybrid approach (at least for the case of formal languages, where things are less com-
plicated than with human languages), and our approach follows this direction too. But
there are several problems with the mentioned mentalistic and objectivist approaches to
put "pragsemantics" into action, as discussed now.

Following [9], we have identified the following demands and issues for ACL seman-
tics, for which we aim to provide a basic approach:

Expressibility. Communications are basically (possibly false) demands directed to other
agents to bring about or to act in accordance with a certain projected (respectively as-
serted) world state (respectively point of view), in which a “world state” is a expected
course of events or a proposed view of history. Thus, the means in order to bring these
states about, possible reactions from other agents (including bystanders) and other as-
pects and implications of the initial and resulting states need to be modeled. In our
opinion, neither the notation of social commitment nor the specification of mental agent
properties are adequate order to do so. The former not, because it essentially reduces
interaction meaning to contracting protocol semantics (leaving the term “commitment”
itself rather under-specified [16]), the latter not also, because communication meaning
external to the agents’ minds can be modeled only indirectly.

Verifiability. Whereas most approaches to ACL semantics use this term in order to
check if normatively imposed regulations are observed (i.e., if agents think and behave
“correctly”), we use the term “verifiability” in a model-theoretical sense to express
that a model of agent communication corresponds with observable processes of agent
interactions, in which this model is to its largest part learned from observations itself,
and only to a small, abstract part imposed normatively.

Flexibility and Support for Meaning Indifference, Emergence and Change. Cur-
rent approaches to ACL semantics work if the set of speech act types is known a-priori
and each locution denotes a fixed and known illocutionary act. Tackling these issues,
Empirical-Rational Semantics restricts itself to a very small predefined core part, de-
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composes all kinds of communication acts into a single type of elementary act, and
determines much of the actual semantics empirically at run-time.

Consideration of Heterogeneous Agent Architectures and Agent Insincerity. If the
semantics of utterances is given in terms of mental agent states, it can either not be vali-
dated (from an agent-external point of view, e.g. of the responding agent, or of the system
designer), or requires the restriction of agent autonomy (e.g. demanding sincerity). The
latter also affects some “objectivist” approaches, if these require norm fulfilling, or make
additional mentalistic assumptions (e.g. “whole-hearted satisfaction” [17]).

Consideration of Agent Intentionality and Rational Attitude. Communication has
an unique property: It constructs a social situation, which is inherently consistent and
reasonable, even if it opposes the “real world” outside communication and the cognitive
beliefs of the agents: 1) Communicated information is supposed to be consistent with
information previously communicated by the same agent, or this agent at least justi-
fies his change of mind, 2) the agent defends and asserts his utterances by means of
argumentation or other rational means like rewards and sanctions, and 3) information
not expressed explicitly can be deduced from information communicated before and
background knowledge. If, for example, in an open auction on the internet some agent
a asserts “I will deliver the goods if you win the auction.”, an observer does not need to
believe him. But the observer believes that the further communication of a complies with
this assertion. To make communication work, this belief is to some extent independent
from reasoning about the true motives “within the agents mind”. Agent a is supposed to
act at least for some time in a rational manner in accordance with the social image that
he projects for himself by means of communication (e.g., a sanctions the denial of his
proposal, rewards its acceptance etc). The information about such (bounded-)rational
attitude is implicitly associated with each communication of a self-interested agent, and
is thus part of communication semantics. Commitment-based approaches largely neglect
this kind of intentionality, moving ACL semantics towards contract making instead.

Interaction Process Generalization and Social Structures. Social structures like norms
strongly influence the semantics of communications. If for example an agent appoints
another agent to be group leader, an explicit acceptance by other agents is not necessary
(in contrast to the joint acceptance of a commitment as in commitment-based semantics)
if the appointing agent already has the necessary power granted by existing social struc-
tures. Empirical-Rational semantics supports such pre-structuring, and the extrapolation
of past interaction experiences (if, e.g., the appointing agent has been successful in the
past, it becomes more likely he also will with his new appointment, even before this
proposal has been accepted explicitly).

Support for Agent Generalizations and Mass Communication. Current approaches
to ACL semantics are intended primarily for dyadic situations. Some of them allow for
message broadcasts, but they lack a concept for unification and weighting of multiple
messages or, respectively, responses, to reflect a (possibly inconsistent) common point
of view of multiple agents, or to enable collaboration in joint communicative action. It is
hardly imaginable, how thousands or even millions of agents shall contribute to, e.g., the
Semantic Web, if social agents are unable to generalize upon their communications by
means of statistical evaluation. Whereas our current formal framework still focusses on
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1:1 communication, and does not yet support generalization, it allows for the stochastic
representation of communication processes, providing a basis for the future inclusion of
the described features.

2.2 Empirical-Rational Semantics

The three central assumptions underlying our approach are that 1) the meaning of com-
munications lies primarily in their expectable, observable consequences, that 2) these
consequences can be learned from the observation and as extrapolations of past commu-
nication processes (without too much reasoning about what is “inside the agents heads”,
which significantly reduces the complexity of the learning task), and that 3) the mean-
ing of communications might evolve during the interaction processes. Please refer to
[1, 8, 9] for theoretical justifications of these assumptions. The basic requirements in or-
der to put these assumptions into practice are the presence of a semantics observer which
derives communication semantics from observations, and a knowledge medium which
represents the assumably shared semantics among the agents as interrelated stochastic
expectations (Expectation Network).

In our communication model (which does not follow speech act theory), a single
communication can be seen as a request to act in conformance with a desired state
declared by its utterance, in which this state is given as a probability distribution of future
events, and the meaning of the utterance is the probability distribution of expected events
subsequent to the utterance. If one agent e.g. utters “Close the door” to another agent, the
desired world state is the door being closed by the addressed agent, and the meaning of
that utterance is if and how the addressed agent works towards this state, possibly together
with side-effect as the sanctioning in case of non-compliance. As another example, if
an agent performs the act “You are the group leader now”, then this act demands that
other agents act as if the addressed agent would perform like a group leader from now
on. In a strict sense, even this performative act will become successful only a posteriori,
but if the nominating agent has been assigned the necessary social power in the past, its
success can be derived immediately from past successes empirically.

In contrast to non-communicative events, an utterance has no (significant) direct
impact on the physical environment. Instead, its physical consequences are achieved
socially and indirectly, and, most important, the addressee is free to deny the communi-
cated proposition. Since an utterance is always explicitly produced by a self-interested
agent to influence the addressee which is not already convinced from the necessity of
the proposal, communicated content will very likely not “believed” immediately, but
needs to be accompanied with communicated reasons given to the addressee to increase
the probability of an acceptance of the communicated content. This can be done either
explicitly by previous or subsequent communications (especially reciprocally: “If you
comply, I’ll comply too”), or implicitly by means of generalizations from past events
(e.g., trust) or given social structures. The whole of the expectations which are trig-
gered by a communication in the context of the preceding communication process we
call its rational hull. The rational hull specifies the rational social relationships which
steer the acceptance or denial of communicated content according the rational attitude
the agents exhibit. Typically, a rational hull is initially very indefinite and becomes in-
creasingly definite in the course of interaction, provided that the agents work towards
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Table 1. A grammar for event nodes of ENs, generating the language M (the language of concrete
actions and events, with Action as the start symbol)

Expect ∈ [0; 1]

Agent → agent 1 | . . . | agent n

PhysicalAction → move object | touch agent | . . .

Action → ECA(Agent ,Projection)

| do(Agent ,PhysicalAction)

| UnpersonalizedEvent

ActionPattern → Action | ?

Projections → (Conditions,GoalStates)

Conditions → SimplePath

GoalStates → SimplePath

SimplePath → Action SimplePath | ε

mutual understanding. The utterances themselves are modeled as pointers pointing to
the desired/proposed states within the Expectation Network (thus denoting subjective
expectation directed to other agents in contrast to the objective expectations maintained
by the semantics observer).

3 Expectation Networks

Expectation Networks (ENs) are the graphical data structures we want to use for the
stochastical modeling of Social Interaction Structures, which in turn represent the se-
mantics of utterances in the form of EN branches. The formal EN definition we present
in this work is an improved yet simplified version of the definition presented in [11].
The central assumption that is made in ENs is that observed events like agent actions
(especially symbolic agent messages) may be categorized as expected continuations of
other observed event sequences. An edge leading from event m to event m′ is thought
to reflect the probability of m and m′ being correlated from the observer’s point of view
(the descriptive power of ENs is thus similar to Markov processes, but in contrast edges
in ENs relate events, not states).

As forM, this is a formal language that defines the events used for labeling nodes in
expectation networks. Its syntax is given by the grammar in table 1. Actions observed in
the system can be either “physical” actions of the format (a, ac) where a is the executing
agent, and ac is an domain-dependent symbol used for a physical action, or symbolic
elementary communication acts ECA(a, c) sent from a to another agent with content c,
or an arbitrary “physical” event (UnpersonalizedEvent , considered to be communicated
implicitly to all agents). We do not talk about “utterances” or “messages” here, because a
single utterance might need to be decomposed into multiple ECAs. The symbols used in
the Agent and PhysicalAction rules might be domain-dependent symbols the existence
of which we take for granted. For convenience, agent(eca) shall retrieve the acting agent
of an ECA eca.
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In addition to normal node labels, we use the symbol (�EN ) to denote the root node
of an specific EN. The special symbol ? marks pseudo-nodes which are just graphical
abbreviations for the so-called completeEN which models the uniform distribution of
all possible combinations and sequences of observable events (see below). A “node”
labeled with ? thus stands for a branch with infinite depth. The content c of a non-physical
action is given by type Projections . The meaning of Projections will be described later.

Syntactically, expectation networks are here represented as lists of edges (m, p, n)
where m and n are actions, and p is a transition probability (expectability) from m to
n. We use functions in : V → 2C , out : V → 2C , source : C → V and target :
C → V which return the ingoing and outgoing edges of a node and the source and
target node of an edge, respectively. children : V → 2V returns the set of children
of a node, with children(v) = ∅ in case v is a leaf. ≺ : V × V → {true, false}
returns true iff there is a path leading from the first argument node to the second and
the event associated with the second node is expected to occur after the event of the
first node. C is the set of all edges, V the set of all nodes in the EN. Edges denote
correlations in observed communication sequences. Each cognitive edge is associated
with an expectability (returned by Expect : C → [0; 1]) which reflects the probability
of target(e) occurring after source(e) in the same communicative context (i.e. in spatial
proximity, between the same agents, etc.).

Sometimes we denote a path p in an EN leading from v0 ∈ V to vn ∈ V as concate-
nations of message labels (ECAs) Label(v0) � ... � Label(vn). The � are sometimes
omitted for shortness. |p| := n. Node : SimplePathEN → V results in the last node of
a certain path given as a string of labels. Nodes or corresponding messages along a path
p will be denoted as pi. EN (M) is the set of all possible expectation networks overM.

Definition 1. An Expectation Network is a structure

EN = (V, C,M,Label ,Expect) ∈ EN (M)

where

– V with |V | > 1 is the set of nodes,
– C ⊆ V × V are the edges of EN . (V, C) is a tree called expectation tree. (V, C)

shall have a unique root node called �EN ∈ V which corresponds to the first ever
observed action2. The following condition should hold:

∀v
∑

e∈out(v)

Expect(e) = 1

– M is the action language. As defined in table 1, actions can be symbolic actions
(ECA(...)), other agent actions or other physical events. While we take the existence
and the meaning of the latter in terms of resulting observer expectations as granted
and domain-depended, the former will be described in detail later.

2 Of course, there are semantics observers imaginable which maintain multiple ENs to model
different social systems, states of knowledge or environmental domains at the same time.
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– Label : V → M is the action label function for nodes, with ∀v ∈ V : ∀e, f ∈
children(v) :
¬unify(Label(e),Label(f)) (where unify shall be true iff its arguments are syn-
tactically unifiable. Cf. [11] for the use of variables in ENs),

– Expect : C → [0; 1] returns the edges’ expectabilities. For convenience, we define
Expect(label|path) = Expect(in(v)) if Node(path � label) = v.

Paths starting with � are called states (of communication)3

4 Social Interaction Structures

Based on the definition of ENs, we can now define Social Interaction Structures as a
special kind of communication structures. Social Interaction Structures capture the reg-
ularities of externally observed communication processes and other assumably publicly
observable events (the latter can be considered as being communicated “by doing”, or
as projected information). The basic ideas behind this concept are that 1) agent sociality
emerges from agent communication, and that 2) communications form a so-called social
system which is closed in the sense that, to some degree, communication regularities
come into being from communications themselves [1], such that the semantics observer
does not need to have to “look inside the agents’ heads” to derive these structures. Be-
cause of that, communication structures can meaningfully be learned from observations.
Nevertheless, this learning process needs to be continuously repeated to adapt the EN to
new perceptions (since open systems with truly autonomous agents with unknown life
spans have no final state), and does always imply the possibility of failure of its pre-
diction task (yet the term “expectation”). The Social Interaction Structures (respectively
the probabilistic distribution it represents, as, e.g., an EN branch) following an utterance
(the node denoting the ECA which is part of this utterance, to be precise) 4 is called the
semantics of this utterance.

4.1 Social Interaction Systems

In [11], we’ve introduced Communication Systems as a universal means for the descrip-
tion of social dynamics of multiagent systems. The two main purposes of a Commu-
nication System are i) to capture the social expectations (represented as an EN) in the
current state of a multiagent system under observation, and ii) to capture changes to these
expectations. Whereas the EN models the meaning of communicative action sequences
at a certain time (i.e., their expected, generalized continuations in a certain context of
previous events), the communication system models the way the EN is build up, and, if
necessary, adapted according to new observations of events. We introduce now Social
Interaction Systems (SIS) as a concrete kind of general Communication Systems. The

3 Actually, two different paths can have the same semantics in terms of their expected continuations,
a fact which could be used to reduce the size of the EN by making them directed graphs with
more than one path leading to a node instead of trees as in this work.

4 Usually, this context is build up from previous events, but it would also be possible that utterances
become contextualized (e.g., more specific) by succeeding utterances.
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difference between general Communication Systems and Social Interaction Systems is
that the latter come with a concrete EN learning algorithm, whereas for general Com-
munication Systems we just demand unspecifically that the expectations within learned
ENs shall reflect the expectation of the semantics observer regarding the future course of
events [11], not specifically taking into account agent rationality and social commitment.
The term “interaction system” comes from social systems theory [1], where it denotes
the most basic kind of communication (=social) system.

As seen in Table 1, we also allow purely physical, non-symbolic events to be con-
tained, like agent actions, but without projections. So the EN of an SIS comprises physical
states of the domain too, as far as these are visible for the semantics observer, and of
course physical events projected by ECAs.

The SIS maintained by the semantics observer is also the assumably shared world
knowledge the agents use as the common ground for their uttered ECAs. Social Inter-
action Systems are thus two dimensional, in the sense that they do not only contain
expectations regarding actual agent behavior including utterances (first dimension), but
also descriptions of the imaginative behavior which the uttering agents tries to bring
about or demand, i.e., which they expect other agents to do.

Definition 2. A Social Interaction System at time t is a structure

SISt = (M, f, �t, ρ)

where

– M is the formal language used for agent actions (according to table 1),
– f : EN (M) ×M → EN (M) is the expectations update function that transforms

any expectation networkEN to a new network upon experience of an action m ∈M.
f(⊥, m) returns the so-called initial EN, transformed by the observation of m. This
initial EN can be used for the pre-structuring of the social system using given e.g.
social norms or other a-priori knowledge which can not be learned using f . Any
ENs resulting from an application of f are called Social Interaction Structures.
As a non-incremental variant we define f : M+ → EN (M) to be
f(m0 �m1... �mt) = f(...(f(f(⊥, m0), m1)...), mt),

– �t = m0 �m1... �mt ∈ M∗ is the list of all actions observed until time t. The
subindexes of the mi impose a linear order on the actions corresponding to the times
they have been observed5,

– ρ ∈ N is a time greater of equal the expected life time of the SIS. We require this
to calculate the so-called spheres of communication (see below). If the life time is
unknown, we set ρ = ∞.

We refer to events and EN nodes as past, current or future depending on their timely
position (or the timely position of their corresponding node, respectively) before, at or
after t. We refer to ENt = f(�t) as the current EN from the semantics observer’s

5 For simplicity, we assume a discrete time scale with t ∈ N, and that no pair of actions can be
performed at the same time, and that the expected action time corresponds with the depth of the
respective node.
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point of view, if the semantics observer has observed exactly the sequence m0m1...mt

of events so far.
The intuition behind our definition of SISt is that a social interaction system can

be characterized by how it would update an existing expectation network upon newly
observed actions m ∈ M. The EN within SISt can thus be computed through the se-
quential application of the structures update function f for each action within �, starting
with a given expectation network which models the observers’a-priori knowledge. �t−1
is called the context (or precondition) of the action observed at time t.

To simplify the following formalism, we demand that an EN ought to be implicitly
complete, i.e., to contain all possible paths, representing all possible event sequences
(thus the EN within a social interaction system is always infinite and represents all
possible world states, even extremely unlikely ones). If the semantics observer has no
a-priori knowledge about a certain branch, we assume this branch to represent uniform
distribution and thus a very low probability for every future decision alternative ( 1

|M | ),
if the action language is not trivially small.

Note that any part of an EN of an SIS does describe exactly one time period, i.e.,
each node within the respective EN corresponds to exactly one moment on the time scale
in the past or the future of observation or prediction, respectively, whereas this is not
necessarily true for ENs in general. For simplicity, and to express the definiteness of the
past, we will define the update function f such that the a-posteriori expectabilities of
past events (i.e., observations) become 1 (admittedly leading to problems if the past is
unknown or contested, or we would like to allow contested assertive ECAs about the
past). There shall be exactly one path pc in the current EN leading from start node �ent

leading to a node pct such that |pc| = t and ∀i, 0 ≤ i ≤ t : Label(pci) = mi. The node
pci and the ECA mi are called corresponding.

The semantics of �t (i.e. mt within context �t−1) is defined as the probability
distribution ΔENt,�t represented by the branch starting with the node within ENt that
corresponds to �t:

ΔENt,�t(w
′) =

∏
i,1≤i≤|w′|

Expect(w′
i|�tw

′
1...w

′
i−1)∑

m∈M+

∏
i,1≤i≤|m|

Expect(mi|�tm1...mi−1)

for all w′ :⇔ �t � w′ ∈ M +. The w′
i denote single event labels along w′.

4.2 Projections

As defined in table 1, ECAs consist of two parts: The uttering agent, and the ECA
content (projections). Each projection is a set of EN node pairs which are derived from
the following two syntactical elements (cf. table 1)6.

– Conditions chooses, using an EN path (without expectabilities), a possibly infinite
set of EN states which have to become reality in order to make the uttering agent

6 Future version of our framework might allow the utterance of whole ENs as projections, in order
to freely project new expectabilities or even introduce novel event types not found in the current
EN.
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start to act towards its uttered goal (e.g. in “If I deliver the goods, you must pay me
the money”). As shown in table 1, conditions are given as a linear list of node labels.
This path must match with paths in the current EN, either absolutely beginning with
�, or starting at nodes after the node which corresponds to the ECA. The end nodes
of all matches in EN are called the condition nodes of the ECA projections. So,
if the node list is empty, the only condition node is the node corresponding to the
ECA. The path matching is always successful, since in our model, an EN implicitly
contains all possible paths, although with a probability near zero for most of them.

– GoalStates chooses, using an EN path (without expectabilities), the (possibly infi-
nite) set of states of the expectation network the uttering agent is expected to strive
for. The uttered GoalStates path must match with a set of paths within the EN such
that the last node of each match is a node of an EN branch that has a condition node
from Conditions as its root. Both in Conditions and GoalStates paths, wildcards “?”
for single actions are allowed.
For the purpose of this paper, we demand that the projections either refer to fu-
ture interactions or be semantically inactive (i.e., they already failed or have been
successful). Theoretically, we could also imagine projections regarding the past. In
this case the respective ECA would express that the uttering agent will likely try to
change the way other agents communicate about the past, but we do not consider
this difficult and rather unusual case here for simplicity.
Note also that projected goal states possibly describe actions the uttering agent
announces to perform himself, not just explicit demands directed to other agents. In
this case, the rational hull for this goal consists of behavior which likely increases
the support from other agents in order to make the goal state come true.

In the context of an EN, every projection implicitly refers to previous or future pro-
jections which announce reasons or positive or negative sanctions the uttering agent
would impose on the ECA receiver in case of a positive or negative response to the ECA.
So, in our model, sanctions and argumentative reasons are projections also, in order to
support the realization of other projections (of course, this can be continued recursively,
e.g. projections in order to support sanctions), and learned from previous processes as
anticipations of future reasons and sanctions7. The projection of accompanying reasons
and sanctions is an inevitable part of every elementary communication act, since among
self-interested agents it would be unreasonable to make propositions without providing
any reciprocative utility to the receiver, with the exception of implicit reasons and sanc-
tions given as pre-existing social structures social structures like social power, laws or
other norms (which we do not consider in this work). Such supporting projections can
be either unspecified, to be specified later, or already be specified by means of previous
events. Of course, like any other kinds of projections, they need not to be “honest”, or
put into action, or be effective.

Because the projections set can represent arbitrary probability distributions, it is pos-
sible for multiple ECAs to express disjunctive statements like “I want you to do either

7 In order to model explicit argumentation or social reasoning systems as special cases of Social
Interaction Systems, we would additionally need to provide an explicit logical interpretation of
ENs, which our framework does not yet accomplishes.
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a or b”, if a and b are inconsistent events (i.e., events which cannot occur both in the
same context). Since consistent ECAs uttered by the same agent are interpreted as con-
junctively related, and ECAs with redundant projections are allowed (which increases its
impact of these projections on the social structures), one can project arbitrary probability
distributions using multiple ECAs. The following functions returns the set of projections
of a single ECA ECA(condition, goal) ∈ M with paths condition ∈ Conditions and
goal ∈ GoalStates:

projectionsEN (M) : M → V × V
projections(V,C,M,Label,E)(ECA(ce1...cen, ge1...gem)) =
{(vn, vm) : {(vi, vi+1) : 1 ≤ i ≤ n− 1} ⊆ C
∧ unify(Label(vi), cei)
∧ {(vi, vi+1) : n + 1 ≤ i ≤ n + m− 1} ⊆ C
∧ unify(Label(vi), gei)
∧ vn ≺ vn+m ∧ unify(Label(vn), cen)
∧ unify(Label(vn+m), gem)}
unify(?, l) andunify(l, ?) shall always be true. For convenience, we writeGoal((c, g)) =
g and Condition((c, g)) = c.

4.3 Rational Hulls

Per se, a projection has no power to make its goal states become true. In fact, projections
don’t have to be rational at all. But we consider it to be rational that the uttering agent
will act towards the projected events at least for some significant amount of time 8. This
time span and the events within, starting directly after the projecting utterance event, are
called sphere of communication (cf. figure 1). Theoretically, each ECA could have its
own sphere of communication. For simplicity, in this work we assume that the sphere
of communication of any ECA eca is simply ρ− time(eca), where the first operand is
the expected time of the last observed utterance within the SIS, and the second is the
utterance time of the projecting ECA. This setting is assumable realistic for small and
simple interaction systems, where the interacting agents likely stick to their opinions
and desires for the whole and usually short duration of the SIS (like auctions). For other
domains we would have to determine the spheres of communication a posteriori from
empirical observations.

The actions the uttering agents is expected to perform within the respective sphere
of communication in order to make his projections come true is called the rational hull
of the ECA. Thus, the determination of the rational hulls of observed ECAs constitutes
the crucial part of the determination of ACL semantics. The rational hull can be seen as
the actual pragmatics and meaning “behind” the more normative and idealistic concept
of social commitments.

We assume the manifestation of the following attitudes by means of ECAs within
the respective spheres of communication and contextualized by means of other ECAs:

– Information of other agents about desired states of communication. This information
is given as projections as described above.

8 This time span of projection trustability can be very short though - think of joke questions.
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ECAx: Goaly

Projection of Goaly

Projections of Goaly

Goaly

Goaly

Goaly

Sphere of communication for ECAx

Fig. 1. An EN with projections and a sphere of communication

– Support of other communicated goals. The supportive functionality communication
has regarding other communications is defined by the rational hulls of the supported
elementary communication acts, which will become implicitly more expectable too
if supporting rational hulls increase their own expectabilities.

– Manifestation of understanding. In case the agents “understand” each other, ECAs
cannot express contradiction to the fact that other ECAs pursue the two previous
intentions (i.e., Agent 1 does not need to believe Agent 2 is right, but she needs to
believe at least that Agent 1 wants to be right in a specific case). We do not consider
misunderstanding in this work.

Capturing these intentions, and given the set of projections for each ECA eca uttered
by an agent a, we calculate the rational hull of a certain ECA using the following two
principles.

4.3.1 Bounded Rational Choice

After uttering eca, an agent a is expected to choose an action policy such that, within
the respective sphere of communication, his actions maximize the probability of the
projected state(-s). Let p ∈ projections(eca, ENt) be a projection. Then, considered
that p would be a useful state for the uttering agent to be in, the rule of rational choice
proposes that for every node vd with agent(vd) = a along the path vt...p leading from
the current node vt to p, Expect(in(vd)) = 1 for the incoming edge of vd, and that
the expectabilities of the reminding outgoing edges of the predecessor of vd are reduced
to 0 appropriately (if no other goals have to be considered). To reduce the complexity
of applying this general rule on the possibly infinite projections set, and to observe the
bounds of observer rationality, we propose the following constraints:
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– Expectabilities will be adapted within the respective sphere of communication of
eca only, even if the goal state p is located beyond this sphere.

– Expectabilities will be adapted only for parts of the current EN with a significant
evidence regarding actions performed by other agents. Since we represent missing
knowledge as uniform distribution, we put this rule into practice by demanding
that at decision nodes of other agents (i.e., nodes with children representing ac-
tions of agents other than the agent which uttered eca) the expectabilities entropy
entropyEN : V → R should be below some given limit.

entropyEN (v) =∑
v′∈children(v)−Expect(in(v′))log2Expect(in(v′))

– If multiple elements in projections are identical apart from their context, and the
paths leading to these projections overlap, priority is given to those projections with
a higher cumulative expectability. Finding the right paths is a markovian multiple-
decision problem from the perspective of the uttering agent a (and thus from the
perspective of the semantics observer which models the behavior of a also), which
in general cannot simply be solved by pairwise comparison of paths leading from
the current node to the competitive projections regarding their maximum expected
utilities, ifprojections(eca, ENt) = {p1, ..., pn} contains more than two elements.

– The projections of previously uttered ECAs have to be maintained, so the rule of
rational choice needs to do a weighting assessment of previously calculated rational
hulls instead of simply outdating them.

We use the following function uEN (M) : M×V → [0; 1] to calculate the utility of an ar-
bitrary node v regarding its supporting function for a specific elementary communication
act eca.

uEN (eca, v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if ∀i, 1 ≤ i ≤ n :
¬v ≺ Goal(pi) ∨ ¬Condition(pi) ≺ v

0 if entropyen(v) > κ, or else:

1 if ∃i : v = Goal(pi)
max

j,1≤j≤c
uEN (eca, vcj)

if agent(Label(vcj)) = agent(eca)
max

j,1≤j≤c
Expect(in(vcj))uEN (eca, vcj)

otherwise

with {p1, ..., pn} = projections(eca), {vc1, ..., vcc} = children(v), and κ being
some predefined entropy maximum.
max (...) could be replaced with (

∑
j,1≤j≤c ...)/c to prefer a high number of paths lead-

ing to a goal instead of the highest expectability for one goal node.

Figure 1 shows an EN modeling the future of some communication process. ECAX is
an utterance which encodes GoalY . This goal itself stands for several (seemingly) desired
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states of the EN (yellow nodes). Since within the so-called sphere of communication of
ECAX (see below) it is expected that the uttering agent rationally strives for these
states, certain EN paths leading to these states become more likely (bold edges). Such
behavior paths need to be (more or less) rational in terms of their expected utility (e.g.
in comparison with competing goal states), and they need to reflect experiences from
analogous agent behavior in the past.

4.3.2 Empirical Stationarity Assumption

If we would use the previous rule as the only EN updating mechanism, we would face at
least three problems: 1) Predicting agent actions according to the rule of rational choice
requires some given evidence about subsequent actions of other agents. In case this
previous evidence is missing, the rule of rational choice would just “convert” uniform
distribution into unform distribution. Therefore, we have to provide an initial probability
distribution the rule can be applied on9. 2) the set of projections for a single ECA might
be infinite. Most of the expectabilities along the paths leading from the current node to
these EN branches sum up to very low probabilities for the respective projection. Thus, a
pre-selection of likely paths will be necessary.And most important 3), the rule of rational
choice does not consider individual behavioral characteristics like (initially opaque) goal
preferences of the agents, but treats all projections uniformly. Goal hierarchies need thus
to be obtained from past agent practice as well as individual strategies towards these
projections. For these reasons, we combine the application of the rule of rational choice
with the assumption of some stationarity of past event trajectories, i.e., the assumption
that previously observed action sequences repeat themselves in the future in a similar
context. We use this assumption to retrieve a probability distribution the rule of rational
choice can be applied on and weighted with subsequently.

In order to learn EN stationarity from previous observations, we follow the so-called
variable-memory approach to higher-order Markov chains using Probabilistic Suffix
Automata (PSA) introduced for L-predictable observation sequences [7]. This approach
efficiently models Markov chains of order L (i.e., with a model memory size of L),
allowing for rich stochastical models of observed sequences. The applicability of this
approach to our scenario is based on the heuristical assumption that many Social Interac-
tion Systems are short-memory systems, which allow the empirical prediction of social
behavior from a relatively short preceding event sequence (assumedly pre-structuring
using social norms, constraints from rational choice etc is done properly). The main
characteristic of the PSA-based approach is its straightforward learning method, with
expressiveness and prediction capabilities comparable with the more common Hidden
Markov Models [7].

For the calculation of the PSA from a set of sample agent action sequences, we use an
algorithm introduced in [7], originally coming from PAC-learning, in a slightly modified
version. It constructs a so-called Prediction Suffix Tree (PST) (sometimes called Proba-
bilistic Suffix Tree) from the samples, which is roughly equivalent to the target PSA, but

9 This probability distribution must also cover projected events and assign them a (however low)
probability even if these events are beyond the spheres of communication, because otherwise it
would be impossible to calculate the rational hull.
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easier to build up. Its only disadvantage in comparison to the corresponding full PSA
is that the time complexity for the predicting task is higher approximately by the factor L.

Definition 3. A Prediction Suffix Tree with memory size L over the language of concrete
agent actions M is a structure PSTL(M ) = (V, C,Label , γ) where

– (V, C) defines a tree graph consisting of a set of nodes V, |V | > 0 and a set of edges
C ⊆ V × V ,

– Label : V → M + returns for a node its label (with maximum length L),
– γ : V → {(d1, ..., d|M |) : di ∈ R} returns for each node a vector which defines

the probability distribution associated with this node. Each element γσ(v) of the
resulting vector corresponds to the conditional probability of the particular message
σ in M .∑

σ∈M γσ(v) = 1 should hold - nevertheless, vector elements with a very low
probability are omitted.

A PST is able to predict the probability of sequences using a tree traversal up to the root,
as γ returns for a specific message its conditional occurrence probability given that the
largest suffix ν, |ν| ≤ L, of the message sequence observed before matches with the
label of this node. L should depend from the available memory resources, the length of
the samples and the expected spheres of communication.

In order to build up the PST from the empirical observations, we need to define the
conditional empirical probability within a set of sample action sequences (where actions
are either ECA utterances or physical actions). As input we us the set samplesSISt

=
{m0m1..., mt} ∪ {r1

1...r
l1
1 , ..., r1

n...rln
n }, where m0m1..., mt is the sequence of events

observed so far for SISt until time t, and the reminder of this set consists of additional
samples to improve prediction accuracy. The r1

i rli
i are optional; we can omit these addi-

tional samples and learn the PSA from the single sequence m0m1..., mt only. But as a
rule of thumb, the lengths of the sample sequences should be at least polynomial in L[7].
If an a-priori EN is given for pre-structuring, the ri could be obtained from a frequency
sampling of sequences from this EN, which is straightforward and thus omitted here.
For lack of space, we also omit the detailed PST-learning algorithm, which can be found
in [7].
The probability for the PST-generation of an event sequence m = m1...mn ∈ (M )n is

PPST (m) =
n∏

i=1

γmi(v
i−1)

where v0 is the (unlabeled) root node of the PST and for 1 ≤ i ≤ n− 1 vi is the deepest
node reachable by a tree traversal corresponding to a prefix of mimi−1...m1, starting at
the root node.

From the probability distribution obtained from PPST , we derive the corresponding
EN using the function δ : M + → EN (M):

δ(m0m1..., mt) = (V, C, M, Label, Expect)
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Fig. 2. Iterative version of the algorithm (outline)

with
V = {�} ∪ {vp : p ∈ paths},
Label = {vp1...pn

�→ pn : p1 � ... � pn ∈ paths},
C = {(�, vp) : |p| = 1, vp ∈ V }
∪ {(vp1...pn−1 , vp1...pn

) : vp1...pn−1 ∈ V ∧ vp1...pn
∈ V },

Expect =

{in(vp1...pn
) �→ PPST (p1...pn)

PPST (p1...pn−1)
, vp1...pn

∈ V }, and

paths = {p : p ∈ M + ∧ PPST (p) > Pmin}, where Pmin is a predefined lower bound
for significant expectabilities.

4.3.3 Rationality-Biased Empirics

Putting together the rule of rational choice and the assumption of empirical stationarity,
we gain the following (non-iterative) definition for the Social Interaction Structures
update function f of an SIS. Figure 2 outlines the iterative counterpart not described
here.

f(m0m1...mt) = �(ENstat , �ENstat )

with ENstat =
(VENstat , CENstat ,M, LabelENstat , ExpectENstat ) such that
VENstat = {vm0 , ..., vmt} ∪ Vδ ,
CENstat =
Cδ ∪ {(�ENstat = vm0 , vm1), ..., (vmt−1 , vmt

), (vmt
, �δ)}

and ∀i, 1 ≤ i ≤ t :
Expect(in(vmi)) = 1, ∀i, 0 ≤ i ≤ t : Label(vmi) = mi, with
(Vδ, Cδ,M, Labelδ, Expectδ) = δ(m0m1...mt).

Expect(in(vmi
)) = 1 reflects the definiteness of already observed events.
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Above, � : EN (M)×SimplePath→ EN (M) applies the results of the calculation of
rational hulls to the entire EN resulting from the PST by means of a recursive top-down
tree traversal which is limited by the maximum search depth maxdepth (alternatively,
we could apply a entropy-based search limitation criterion similar to the criterion used
in 4.3.1).
�((V, C, M, Label, Expect), path) =

{
(V, C, M, Label, Expect) if |path| > maxdepth

(V, C, M, Label, Expect|children(v)|) otherwise

using v = Node(path), ΔU (v) = {(vj , u(Label(v), vj)) :
vj ∈ V, agent(Label(vj)) = agent(Label(v))},

∀vj ∈ V : Expect0(in(vj)) =⎧⎪⎪⎨
⎪⎪⎩

Expect(in(vj)) + ΔU (v)[vj ]
2

if Time(vj) < ρ ∧ agent(Label(vj)) = agent(Label(v))
Expect(in(vj)) otherwise

and

∀n, 1 ≤ n ≤ |children(v)| :
Expectn :⇔ (V, C, M, Label, Expectn) =
�((V, C, M, Label, Expectn−1),
path � Label(children(v)n)).

Here, ΔU (v) assigns every node vj its utility regarding the ECA Label(v), if the acting
agent is the same for v and vj . Expect0(in(vj)) assigns the node its new expectability
(equally weighted with its previous expectability, which might be already be utility
biased from another ECA), and Time(vj) < ρ limits the application to nodes within the
sphere of communication. ΔU (v)[vj ] denotes the utility for reaching v assigned to vj .

5 Conclusions

We have introduced an approach to the semantics of agent communication which com-
bines features from traditional mentalistic and objectivist approaches. Being a novel and
very basic proposal, several important things remain to do:

- ECAs and ENs do not explicitly model logical propositions and their relationships
(e.g., in an EN, a low probability for uttering “no” does not automatically increase the
probability for uttering “yes”, as it should, and one can express logical statements only
indirectly by stating their pragmatical consequences in terms of events).
- To be of practical use with common ACLs, ECAs also need to be obtainable from
conventional speech acts, which requires a translation of speech act types into ECA
patterns within the EN (and vice versa, in order to learn new speech act types from
emergent ENs).
- Related to the previous issue, the explicit emergence of communication symbols as
“shortcuts” for combinations of ECA patterns is not yet supported.
- Meta-communication (communication about communication) is not yet supported,
and also not different spheres of communications and the empirical derivation of the
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boundaries of spheres (required e.g. in order to model multiple coexistent, inconsistent
opinions of a certain agent).
- The EN learning algorithm does not yet make use of generalizable behavior patterns
that different agents have in common (like agent roles).
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Abstract. Contrasting the standard framework based on agent-to-agent direct
communication, in this paper we focus on agent interaction with the environment.
In particular, the environment is seen as populated by coordination artifacts [1],
automatising coordination tasks and mediating agent interaction.

As a semantic framework for this context we propose operating instructions,
which the agent reads and interprets to become aware of the allowed actions and
perceptions at a given time, and the MAS infrastructure can exploit to enforce
correct agent behaviours and detect wrong ones. This allows us to conceptually
handle a number of crucial aspects related to agent interaction, including interac-
tion protocols, timing properties — such as delays and timeouts —, and a notion
of contract featuring violation and guarantees.

Formally, our framework is based on a process algebra featuring (i) explicit
connection between action and its related perceptions, (ii) a time-based branch op-
erator, (iii) violation and guarantee deadlock states, and (iv) association of mental
properties to interactions.

1 Introduction

The semantic study of agent interaction is a key topic of the Multi-Agent Systems (MAS)
research field. A basic goal of this line of research is to define a standard approach for
interaction, enabling heterogeneous agents to collaborate, to semantically interoperate
by understanding not only the content but also the “rational meaning” of their interac-
tion. This study has mainly focussed on direct communication between agents, namely
by considering Agent Communication Languages (ACLs) based on speech-act theory
— examples of such semantics include mentalistic [2], protocol-oriented [3], and so-
cial commitments [4, 5] approaches. However, mediated forms of interaction have been
increasingly considered as an interesting, plausible alternative to direct interaction, in
particular in scenarios like environment-based coordination, such as stigmergy [6] and
coordination infrastructures [7]. Even following the frequently exploited connection be-
tween agent and human behaviour, one observes — inspired e.g. by Activity Theory [8]
— that humans very often do not collaborate by direct speaking, but through mediating
artifacts of various kinds, such as blackboards, semaphores, signs, and the like, which
are all constructed with the specific aim of simplifying interaction. Such artifacts are
not suitably modelled as agents, because agent peculiarities such as autonomy, proac-
tiveness, and rationality simply do not apply for them — we stress this difference by
referring to an artifact by “it” and to an agent by “he”.

R.M. van Eijk et al. (Eds.): AC 2004, LNAI 3396, pp. 173–192, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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In spite of the emergence of these new scenarios, however, the very issue of se-
mantics for mediated interaction has still to be understood and studied in detail. As a
reference case we consider the framework of coordination artifacts introduced in [9, 1]
and inspired by Activity Theory. Coordination artifacts are abstractions provided by the
MAS infrastructure so as to embody a mediating artifact: their role is to mediate the
interactions of a group of agents by realising a given coordination task. An agent sees a
coordination artifact as an entity of the environment, and interacts with it by executing
actions that the artifact is designed to support: from this viewpoint such interactions are
more similar in nature to physical acts rather than to communicative acts [10].

Conceptually inspired by the way humans exploit electronics-based physical devices,
our semantic approach to the interaction of agents with coordination artifacts is based
on the notion of operating instructions, namely, instructions operationally describing
how an agent has to use a coordination artifact. As such, operating instructions specify
the protocol of actions and perceptions which are step-by-step allowed to the agent by
the artifact, also including timing properties and constraints related to the occurrence of
these interactions. In particular, operating instructions can also serve as a tool to support
a notion of contract: they can specify which interaction paths are considered wrong
agent behaviour or wrong artifact behaviour, identifying situations of agent violation or
agent guarantee that the MAS infrastructure is in charge of properly handling.

From the agent viewpoint, operating instructions can be seen as a model for the agent
plan concerning the exploitation of the coordination artifact (similarly to e.g. [11]): agent
intentions can be suitably set by simply considering the operating instructions, which
are to be executed on a step-by-step basis. Moreover, operating instructions can also
come with the specification of preconditions for actions and effects to perceptions, both
formulated in terms of mental properties. This information can be leveraged by the agent
to relate interaction to his mental state, enabling interaction protocols to be carried on
by means of rationality.

Elaborating on [12], in this paper we provide the formal description of a language for
operating instructions, which is a key ingredient of our methodology, crucially affecting
not only the design of coordination artifacts, but most importantly here the way agents
interpret them. This is developed using an algebraic approach: like in calculi such as
CCS [13], operating instructions are seen as elements of a process algebra, describing
the allowed agent interactive behaviour. The process algebra we introduce to this end
features common operators such as action prefix, choice and parallel composition, and
recursive definitions. Nevertheless, new mechanisms have been introduced to fit the aims
of our context: (i) connection of actions and perceptions through matching identifiers,
inspired by the name restriction operator of CCS; (ii) violation and guarantee deadlock
states, modelled as absorbing elements of the algebra with different priority; (iii) a time
branch operator inspired and adapted from [14], allowing a number of properties such
as deadlines and delays to be specified. The operational semantics we provide for this
process algebra serves not only as a specification tool, but is actually the abstract design
of the agent part in charge of interpreting operating instructions.

The remainder of the paper is organised as follows. Section 2 introduces the notion of
coordination artifact and its main properties; Section 3 describes the formal framework
behind our semantic approach, and provides a number of useful examples; Section 4
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deepens the relationship between operating instructions and agent rationality; Section
5 shows an application based on the Contract-Net protocol; Section 6 discusses related
work in the context of ACL semantics; and finally Section 7 concludes providing final
remarks.

2 Environment and Coordination Artifacts

The MAS scenario we consider in this paper is based on the notion of coordination
artifact [9, 1]. This is conceived by adapting to the MAS field the concept of mediating
artifact introduced in the Activity Theory [8], where it is used to model those entities and
abstractions that humans construct and then use to coordinate one to each other. Coor-
dination artifacts are abstractions provided by the MAS infrastructure, and embodying
some coordination laws designed to mediate the interaction of a group of agents. An
example of coordination infrastructure that supports this notion is TuCSoN [7], where
tuple centres play the role of coordination artifacts for agents. In spite of an existing
implementation, the remainder of the paper remains completely independent of it, for
we intend to focus on semantics aspects.

A coordination artifact is characterised by a usage interface, which is a set of op-
erations allowed to agents, such as requesting information, notifying results, providing
replies, issuing broadcasts, and so on. A coordination service is provided to agents by
allowing them to execute actions over the coordination artifact, each specifying an op-
eration of the usage interface. Hence, from the agent viewpoint coordination artifacts
are very much like physical resources living in the agent environment: the agent can act
on them by executing actions, and sense them by eventually perceiving the outcomes
of such actions — also called action completions. In particular, action execution is used
when some information has to flow from an agent to a coordination artifact, with the
corresponding perceptions carrying information about a related flow from the coordina-
tion artifact to the agent. These two kinds of interaction are modelled in a combined way
by the action/perceptions schema, so as to support and stress the idea that the agent acts
upon the coordination artifact, and never the opposite — since the artifact, differently
from an agent, is not a proactive component.

Connected to this notion of usage interface, coordination artifacts are also charac-
terised by the idea of operating instructions — sometimes only instructions for brevity.
An agent interacting with a coordination artifact is given operating instructions that
specify the precise procedure by which the coordination artifact is to be exploited, and
that characterise the role — in the broader acceptation of the term — the agent is playing
in the collaborating group. These not merely define the operations allowed — which are
in general a subset of all the operations supported by the artifact — but rather the protocol
to be used, the allowed sequences of actions and completions. Instructions can describe
a non-deterministic agent behaviour, in the sense that at a given time the agent might be
allowed to execute more actions or obtain more perceptions, each possibly involving a
different protocol continuation. Also, instructions can describe an unbounded protocol,
e.g. because the number of interacting agents is not fixed a priori, so that the number
of necessary interactions can dynamically change. Moreover, when specifying some
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instructions, actions and perceptions can come equipped by preconditions and effects,
respectively, which are expressed in terms of agent beliefs. In the end, as described in
detail in [15] and in next sections, the instructions along with these preconditions and
effects provide an effective means by which rational agents can carry on the interaction
protocol in a meaningful way.

Developing the work in [1], in this paper we add other features to operating instruc-
tions, so as to make them a more powerful tool for the semantic interaction between
agents. We first add the notion of violation. Operating instructions can be seen as a
contract between the agent and the coordination artifact, which the MAS infrastructure
is in charge of enforcing. In particular, instructions are the suitable place where specify
wrong paths of interaction that can be ascribable to either the agent or the coordination
artifact. From the viewpoint of the agent playing the instructions, they are respectively
seen as violations and guarantees. In either case, the operating instructions should be-
come invalid, prevent any further interaction, and be in a state distinguishing between
the two possibilities. In this way, by making some entity of the MAS infrastructure reify
the instructions state on a step-by-step basis, it is possible to intercept wrong behaviour,
and e.g. legally address them by charging the agent (in case of violation) of refunding
its expenses (in case of guarantee).

We then add timing properties to operating instructions. This feature, which allow
us to specify deadlines and delays, is particularly useful to flexibly express violations.
In fact, as far as openness and high dynamism are concerned, it is crucial to prevent
agents to either fail to timely respond to a protocol, or conversely to act too frequently
over a coordination artifact. Similar arguments hold from the agent viewpoint, as he may
require a certain level of quality of service from a coordination artifact.

In this paper, we suppose that an agent is aware of the instructions he is currently
following, and can then reason about them. This can be obtained in several ways: (i) by
hard-coding this information in the agent, (ii) by including it in the domain ontology
description, (iii) by allowing the agent to inspect the artifact, or (iv) by some infrastruc-
tural support (such as the notion of Agent Coordination Context [16]), depending on the
application scenario. We abstract away from this issue, and make non further hypothesis
on the negotiation phase leading to agents agreeing on exploiting a given artifact —
called the co-operation phase in Activity Theory. In this paper we instead concentrate
on the run-time aspects of an agent playing given operating instructions.

Coordination artifacts feature other key properties, such as malleability and in-
spectability of behaviour, which are less relevant in the context of this paper, but are
rather fundamental in making them engineering abstractions effectively and efficiently
supporting coordination tasks. The details of all these aspects, which the interested
reader can find in [9, 1], make coordination artifacts abstractions for which the agent
model is not particularly suitable, and which provide an interesting case for studying the
semantics of mediated interaction.

3 Formal Framework

A general picture of the whole formal framework of coordination artifacts is presented in
[1], based on coordination artifact behaviour (implementing given coordination rules), an
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abstract architecture for agents (dealing with internal agent details), and an operational
semantics for operating instructions. As far as interaction semantics is concerned, we
here focus on formalising operating instructions — the other aspects being less relevant.

Operating instructions are here described in terms of a language. Syntax is provided
as usual with a BNF grammar, expressing the shape of allowed instructions. Semantics is
represented operationally, through a labelled transition system specifying how instruc-
tions evolve as agent interactions occur or as time passes (similarly to the approach in
[17]). Indeed, this semantics is particularly useful as it specifies how the agent should
interprete instructions, namely, which actions/perceptions are allowed at a given time.

In this paper we adopt the notion of meta-variables — see [18] for a formal discussion
on this widely exploited notion. Given a meta-variable x, we denote by Set(x) the set
of elements over which it ranges, we consider it as a non-terminal symbol in grammars,
and see its decorations x′, x′′, x0, x1, and the like as ranging over the same set.

In the specific scope of this paper, we let meta-variable α range over agent actions,
π over agent perceptions,N over the names of operating instructions definitions, i over
interaction identifiers, and consider their sets as disjunct. Then, α, π, and N denote
terms whose syntax is abstracted away here, but which can be subject to substitutions
σ ∈ Σ (partial functions from terms to terms). We write σt for the substitution σ applied
to term t, say that term t is more general than t′ (and that t′ is more specific than t) if
for at least one substitution we have σt = t′, and denoted by {t/t′} the most general
substitution (if present) such that {t/t′}t′ = t.

3.1 Actions and Violations

We start presenting a subset of the language for operating instructions, neglecting timing
aspects. What we obtain is a language able to express protocols of actions and percep-
tions, along with notions of agent and coordination artifact violations.

Meta-variable ω ranges over agent interactions, and is expressed by the syntax:

ω ::=!(i)α | ?iπ

!(i)α represents an action α tagged by the identifier i, while ?iπ a perception π cor-
responding to a previous action with identifier i. In order for a trace (or sequence) of
interactions to be well-formed, any interaction ?iπ must be preceded by an interaction
!(i)α, that is, featuring the same identifier i — the action could occur several interactions
before a related perception. This is compatible with the idea that in our framework agent
perceptions only represent the outcomes of an action the agent has previously executed.

To the end of this language presentation, actions and perceptions are seen as abstract
terms without any further hypothesis on their content. However, in real cases they can
carry some information about their nature, including their source and target, the time
at which they occurred, as well as ontological aspects such as the mental preconditions
and effects they are equipped with — as described in previous section.

The abstract syntax of operating instructions, ranged over by I and L, is expressed
by the following grammar:

I, L ::= 0 | ε | γ | ω.I | I + L | I||L | N
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Term 0 represents the terminated instructions, in that state the agent cannot execute
actions. ε is the state of instructions representing agent violation, and dually, γ the state
of instructions representing a violation by the coordination artifact (also called, an agent
guarantee). ω.I denotes the instructions allowing interaction ω (or any more specific
one) followed by instructions I . Then, as in more standard process algebras (e.g. CCS
[13]) I + I ′ is the choice between I and I ′, I||I ′ the parallel (interleaved) composition
between I and I ′, and finallyN is the invocation of an instructions definition of the kind
N := I , which should be specified along with the instructions where N occurs.

When parenthesis are not specified, we assume operator + to have priority over ||.
The prefix action operator ω.I allows us to express sequences of interactions, choice +
to define instructions featuring more possible interaction histories, parallel composition
|| for specifying concurrent instructions, and finallyN to recursively define instructions
so as to enable infinite behaviours. In a sequence of interactions ω1.ω2. . . . .ωn.0 we
often avoid reporting the concluding “.0” notation.

We introduce an equivalence relation defining instructions that should be considered
syntactically identical. This is defined as the smallest congruence relation satisfying the
rules:

0 + I ≡ I I + L ≡ L + I (I + L) + I ′ ≡ I + (L + I ′) [C-CHO]
0||I ≡ I I||L ≡ L||I (I||L)||I ′ ≡ I||(L||I ′) [C-PAR]

N ′ ≡ {N ′/N}I if N := I [C-DEF]
ε + I ≡ ε ε||I ≡ ε [C-VIO]

γ + (ω.I||L) ≡ γ + L γ + γ ≡ γ [C-GUA1]
γ||(ω.I + L) ≡ γ||L γ||γ ≡ γ [C-GUA2]

Rules [C-CHO] and [C-PAR] define choice and parallel composition as commutative and
associative operators absorbing instructions 0. Rule [C-DEF] states that an invocation
N to some instructions definition N := I behaves like the associated instructions I ,
modulo the necessary substitution. That is, if a more specific nameN ′ is actually invoked,
substitution {N ′/N} is applied to I as well. In particular, this rule features overloading
of the substitution operator, which is applied to instructions other than to terms: in this
case substitution is to be applied to any term (action, perception, instruction names)
inside the instructions. Rules [C-VIO] are used to make ε absorbing any instructions
through operators + and/or || — namely, a violation gets propagated to the composed
instructions. Similarly, rules [C-GUA1] and [C-GUA2] propagates a guarantee state γ,
with the only difference that such a propagation has lower priority than ε, in that e.g.
ε||γ ≡ ε.

In the following, we assume the specification of some operating instructions to be
well-formed, in the sense that in any instructions (or sub-instructions) of the kind !(i)α.I
the identifier i never occurs in another action in I or in definitions in I — this prevents
clash of action identifiers.

Operational semantics is defined by a transition system specified by tuple 〈Set(I),−→
,→δ, Set(ω)〉. Labelled transition relation −→ is of the kind −→⊆ Set(I) × Set(ω) ×
Set(I): when 〈I, ω, L〉 ∈−→, also written I

ω−→ L, we mean that (i) instructions I allow
the agent to execute ω (action or perception), and that correspondingly (ii) instructions
I move to state L. Notation I � ω−→ means that for no L we have I

ω−→ L. Predicate
→δ⊆ Set(I) over instructions is used instead for identifying deadlock states: when
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I ∈→δ , also written I →δ , we mean that I is a deadlock state (an agent or coordination
artifact violation); I �→δ denotes the opposite case.1

Deadlock predicate→δ is defined by rules

ε →δ [VIO]

I →δ

I + L→δ
[V-CHO]

γ →δ [GUA]

I →δ

I||L→δ
[V-PAR]

which simply state that ε and γ are deadlocked along with any parallel or choice com-
position involving them. The transition relation −→ is instead defined by rules:

I
ω−→ I ′ L �→δ

I + L
ω−→ I ′ [O-CHO]

!(i)α.I
!(i)α′
−−−→ {α′/α}I [ACT]

I
ω−→ I ′ L �→δ

I||L ω−→ I ′ + L
[O-PAR]

?iπ.I
?iπ′
−−→ {π′/π}I [PER]

Rule [O-CHO] says that among two (or more) choices, only one is allowed to proceed,
as long as the others are not deadlocked. Conversely, rule [O-PAR] says that in a parallel
composition, any instruction is allowed to proceed, as long as the others are not dead-
locked. Finally, rule [ACT] says that in instructions !(i)α.I , any more specific action
α′ can be executed, and the corresponding substitution is applied to the continuation I;
similarly for rule [PER], handling perceptions.

The computational model induced is as follows. Following the idea in [19], we denote
by “completed trace of execution” an evolution of instructions I (along with the involved
interactions ω) reaching a final point where no more interactions can occur. Then, given
an initial state of instructions I , a completed trace of execution is of one of the two kinds:

– Finished instructions:

I
ω1−→ I1

ω2−→ I2
ω3−→ . . .

ωn−−→ In ≡ 0
The agent executes actions and obtain perceptions as allowed by the instructions,
until reaching the terminated instructions.

– Violation:

I
ω1−→ I1

ω2−→ I2
ω3−→ . . .

ωn−−→ In �→δ

As interactions occur, the agent reaches a deadlocked state In, in this case we have
In � ω−→ for any ω, and either In ≡ γ or In ≡ ε.

3.2 Examples

We here report some remarkable example of operating instructions along with their
intuitions. Elements written in typetext font are considered variables possibly subject to
substitution.

1 Differently from more common interpretations of the term “deadlock”, here we do not intend
a synchronisation fault between a composition of processes, but rather, a single abstraction —
operating instructions — getting stuck because of a wrong interaction path.
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Actions, Perceptions, and Substitutions. Consider the following operating instruc-
tions definition:

N :=!(i)ask(query).?ireply(query, res)

They state that the agent may first execute an action of the kind ask(query), and then per-
ceive a corresponding perception reply(query, res). The link between action and per-
ception is set by the same identifier i in them. Then, because of substitutions ([ACT]), if
the agent executes an actual action ask(q0), he will later obtain a perception reply(q0, r0)
(with same query specification q0). This simple protocol can be executed indefinitely as
follows:

N := !(i)ask(query).?ireply(query, res).(N+!(i
′)stop)

In this case, the protocol can terminate after any number of queries, by executing action
stop. Finally, due to the substitution mechanism again, we can force the agent to ask for
the same query all the times by the specification:

N := !(i)ask(query).?ireply(query, res).(N(query)+!(i
′)stop)

N(query) := !(i)ask(query).?ireply(query, res).(N(query)+!(i
′)stop)

In fact, after the first action, the query value is substituted in all the following actions
through the instructions name N(query).

Linking Actions and Perceptions. In our framework it is crucial for an agent to relate a
perception to an action previously executed. Consider the case where an agent executes
two actions α and α′ and then obtains the corresponding perceptions π and π′. This can
be modelled in any of the following ways:

N := !(i)α.!(i
′)α′.?iπ.?i′

π′

N ′ := !(i)α.!(i
′)α′.(?iπ||?i′

π′)
N ′′ := (!(i)α.?iπ)||(!(i′)α′.?i′

π′)

In the first case, the order of actions and corresponding perceptions is completely de-
termined; in the second case, the agent executes action α, then α′, then he waits for the
two perceptions concurrently; in the third case the two couples action/perception are
handled separately and concurrently.

Also, we can model the situation where more perceptions result from a single action,
which is simply obtained through the proper identifiers. The following specification
models the case of two perceptions related to the same action

N := !(i)α.?iπ.?iπ′

whereas an unbound number of perceptions can be modelled as:

N := !(i)α.N ′

N ′ := ?iπlast+?iπ.N ′
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Protocols. Choice composition operator along with sequential composition allows the
specification of any protocol of actions and perceptions. A paradigmatic example is the
following:

N := !(i)α.(?iπ1.I1 + . . .+?iπn.In)

As action α is executed, the agent can distinguish between n perceptions π1, . . . , πn:
depending on which one is received a different continuation is considered (either
I1, . . . , In), that is, different operating instructions are to be followed next.

Violations. Operating instructions endorse a notion of contract between the agent and
the coordination artifact involved. As such, they may specify sequences of interactions
interpreted as agent violations, or others as coordination artifact violations. As a first
example, at a given time an agent may be required to execute a given action α and not
another αv; this is realised as follows:

N := !(i)α.I+!(i
′)α′.ε

If action α is executed, continuation I is allowed to carry on; if action α′ is executed
instead, the instructions move to state ε representing an agent violation, where no other
interactions can occur.

Conversely, as an agent executes an action α, he might be guaranteed to obtain
perception π instead of πg — the latter may e.g. represent a failure or a not-understood
message. This is represented as:

N := !(i)α.(?iπ.I+?iπg.γ)

If perception πg occurs, the instructions move to state γ, representing a violation by the
coordination artifact.

3.3 Timed Properties

We add to the framework developed so far the notion of time passing, by which we aim
to handle interesting aspects such as delays and deadlines. The general approach we
follow is that of timed process algebras — see [20] for a general framework and further
references. In particular, our timed extension is inspired by the branch operator in [14],
though its integration with violation states is novel.

Let k and h range over non negative integer values. The syntax of the language is
extended with a time-based operator as follows:

I, L ::= 0 | ε | γ | ω.I | #I$kL | I + L | I||L | N

Informally, instructions #I$kL means that instructions I are allowed, but if the agent
does not starting executing I within k units of time this possibility disappears, and the
agent should proceed with instructions L. Accordingly we add to the transition relation

labels of the kind τ(k) (k > 0): we write I
τ(k)−−−→ L to say that instructions I may move
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to state L as k units of time have passed. While predicate→δ is unchanged, the following
rules are to be added that extend the semantics of transition relation −→:

ω.I
τ(k)−−−→ ω.I [T-ACT]

L
τ(h)−−−→ L′

#I$kL
τ(k+h)−−−−−→ L′

[DEAD]

I
τ(k)−−−→ I ′ L

τ(k)−−−→ L′

I||L τ(k)−−−→ I ′||L′
[T-PAR]

#I$kL
τ(k−h)−−−−−→ #I$hL [TIME]

I
ω−→ I ′

#I$kL
ω−→ I ′ [BRANCH]

I
τ(k)−−−→ I ′ L

τ(k)−−−→ L′

I + L
τ(k)−−−→ I ′ + L′

[T-CHO]

Rule [ACT] says that prefix interaction ω.I is not affected by time passing. Rule [TIME]
states that if time passes (of k − h units of time) but the branch deadline k does not
expire (note that k > h by construction), then the left possibility (I) remains open,
but the deadline is to be updated (to h). Due to rule [DEAD], if on the other hand the
deadline expires (of h units of time), the right instructions L proceed, after applying to
them h units of time. Rule [BRANCH] is used to state that if prior to the deadline the left
instructions I move due to an interaction ω, then the right instructions J are excluded.
Finally, rules [T-PAR] and [T-CHO] say that time passing propagates to both parallel
and choice composition. The computational model we obtain is similar to the previous
one: interactions and type passing occur evolving the operating instructions, until either
the state 0 or a violation (ε or γ) is reached.

3.4 Examples

The branch operator introduced allows for a number of interesting time-based constructs,
as shown in the following examples.

Actions with Deadline. A first, remarkable example of exploitation of timing properties
is the case where operating instructions specify that an agent must execute a given action
within k time units. This is obtained as follows:

N := #!(i)α.I$kε

If the agent executes action α within k time units, then continuation I is allowed to
carry on, otherwise, after k +1 time units instructions will move to the violation state ε.
Thanks to parallel compositions, then, a deadline to an action is compatible with other
behaviours carrying on independently. For instance, int the following schema

N := I||#!(i)α.L$kε

instructions I can be executed as usual: however, if after k time units action α is not
executed, then the right hand side moves to ε, making the whole instructions to being
violated. This idea can be useful to impose global deadlines to some instructions.

Action deadline can be simply extended to the case of more actions featuring different
deadlines. First, write [I]kJ as a shorthand for #I + J$kJ , meaning that the agent can
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execute either I or J , but the possibility of executing I disappears after k time units.
Notice that this new operator could be added to an actual implementation of our language
for operating instructions. Suppose that k1 < k2 < . . . < kn: we may require an agent
to execute any action αj (1 ≤ j ≤ n), but each within its own deadline kj . This is
expressed by the instructions:

N := [!(i1)α1.I1]k1 [!
(i2)α2.I2]k2−k1 . . . #!(in)αn.In$kn−kn−1ε

Notice that, differently from the others, the last branch construct is the standard one
#I$kL: this is to prevent ε to be a possibility before kn expires.

Perceptions with Deadline. Conversely, it might be interesting to guarantee an agent
to obtain a perception within a certain amount fo time. By the instructions

N := !(i)α.#?iπ.I$kγ

if the agent perceives π within k time units then the continuation I can carry on, otherwise
the deadlock state γ is reached. Multiple deadlines for more perceptions can be expressed
similarly to the case of actions, as follows:

N := !(i)α.[?iπ1.I1]k1 [?
iπ2.I2]k2−k1 . . . #?iπn.In$kn−kn−1γ

Waiting and Expiring Actions. Our approach allows for describing even more timing
properties. In some scenario, it may be crucial to allow a coordination artifact to require
a maximum frequency of interactions, e.g. in order to guarantee a certain quality of
service. For instance, it may force an agent to wait k time units before executing an
action. This is obtained by the definition:

N := #!(i)α.ε$k!(i)α.I

if the agent executes α within k time units then the deadlock ε is reached, otherwise the
continuation I can carry on.

For similar reasons, an artifact may guarantee a service to an agent only for few time
units, if the agent does not exploit it the possibility disappears. By the instructions:

N := #!(i)α.I$kI

the possibility of executing α disappears after k time units, if this is not exploited the
continuation I carries on.

4 Relation to Agent Rationality

As most ACL semantics, our semantic framework for mediated interaction does not
require any specific agent architecture, but can leverage agent intelligence to enable
dynamically emerging cooperations. This is achieved by means of the operating instruc-
tions, by the joint exploitation of interaction protocols and mentalistic (belief-based) se-
mantics to actions and perceptions. We here briefly review this aspect, which is amenable
to a formal model following the approach in [15].
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Preconditions and Effects. First of all, we assume that actions α and perceptions π
are equipped by information about their impact on the agent mental state. In particular,
denote Pre(α) preconditions to the execution of α expressed as agent beliefs: only if
that preconditions hold the agent should execute α. Similarly, denote Eff (π) effects
to the perception π expressed as changes to agent beliefs: as the agent perceives π the
changes should be applied to his beliefs. Let B the set of all possibile agent belief states,
for simplicity we simply suppose that Pre(α) is a predicate over B, and Eff (π) is a
function B �→ B.

As described in detail in Section 6, by the terms “should” above we do not mean
that validity of preconditions and application of effects are mandatory for the agent
complying to the interaction semantics. Rather, they are just to be interpreted as a means
to exploit agent rationality to maximise his benefits when using the coordination artifact
— e.g. to decide which of the allowed actions to execute, and how the agent knowledge
should update due to perceptions.

Agent Perception of Time. In order to correctly reason about operating instructions
with timing properties, the agent should be aware of time passing. Write B pass(k) for
the agent getting aware about the fact that k units of time passed. We distinguish two
basic cases.

If the coordination artifact and the agent reside in the same physical place, it is
reasonable to assume they have a common and uniform perception of time passing. In
this case, the way they track time passing in operating instructions is equal.

However, it can be the case that they stay in different nodes of a network, so that it is
impossible to enforce a completely synchronised notion of time. Notice that this problem
is general, and would hold in any protocol over a distributed system. In this situation, we
first assume that time passing is always relative to the coordination artifact, which is in
fact the entity that should mediate between different agents and is in charge of keeping a
consistent state of shared data and of providing a quality coordination service. Then, we
assume that the agent perceives time passing directly from the coordination artifact, that
is, B pass(k) is the result of an implicit interaction between the agent and the artifact.
If ordering of interactions is guaranteed, this should at least allow the agent to recognise
whether the execution of an action has occurred before a deadline expired.

Notice that in order to overcome this partial solution to the problem, in [21] we
proposed the notion of Agent Coordination Context (ACC), which is an infrastructure
abstraction local to the agent site, and in charge of enabling and enforcing its correct
behaviour. The ACC appears to be the right place where timing properties must be
controlled and enforced.

Agent Abstract Behaviour. Following the discussion in Section 2, we assume that
before actually interacting with the coordination artifact, each agent is aware of the
operating instructions he has to follow — namely, he has a correct believe about the
current state of the protocol, about preconditions to actions, and effects to perceptions.
Most likely, the agent contracted with the MAS infrastructure the operating instructions
to use to interact with a coordination artifact, and thus downloaded the corresponding
specification.
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Write B instr(I) for the fact that the agent believes that I is the current state of the
instructions he has to follow, briefly referred to as the current instructions — expressed
using the algebraic notation of previous section or an equivalent one.

The key point of our semantic approach is that an agent meaning to follow the
operating instructions simply intends to execute the prescribed actions (and gets aware of
the corresponding perceptions) on a step-by-step basis, keeping track of how instructions
correspondingly evolve. More precisely:

– At any point of the interaction protocol, among the available actions the agent should
intend to execute any of those allowed by the current instructions and satisfying the
preconditions Pre(α): that is, the agent intends to execute α if, given B instr(I),

we have I
!(i)α−−−→I I ′ for some I ′ and i, and Pre(α) holds in current agent beliefs

B. From the point of view of our interaction semantics, the agent could choose any
of such actions: if many of them exist, a decision can be taken by reasoning on
the effects that can be obtained later by following a given choice. As one action is
chosen, say α0 (and i0), this can be executed — it is allowed by the coordination
artifact by construction —, and correspondingly the current instructions of the agent

will move to the state I0 such that I
!(i0)α0−−−−→ I0.

– Eventually, a perception π of a previously executed action α will also be received,
which the agent gets aware of due to the occurrence of B done(?i0π) in the beliefs.

Given the current instructions I , by construction there is some I ′ such that I
?i0π−−−→ I ′:

so I ′ will be the next state of the instructions, and the effects Eff (π) will be applied
to the beliefs.

– Moreover, as the agent perceives the passage of k units of time, he will update its

current instructions from I to I ′ if and only if I
τ(k)−−−→ I ′.

– If the agent instructions reach state 0, the agent knows he finished to play them.
If they reach ε or γ the agent stops playing instructions, e.g. waiting for the MAS
infrastructure to legally proceed against the violator.

This schema, combining the intentions set by the current state of instructions and the
beliefs affected by action and perception semantics, ensures a good support for semantic
interoperability, as discussed in [15].

5 A Contract-Net Case

In this section we show the operating instructions of a Contract-Net scenario [22], where
a coordination artifact mediates the interactions between an initiator and a number of
participants. We assume that, at the beginning, the initiator and the participants negotiate
with the infrastructure for a coordination artifact realising the Contract-Net protocol
with given features, including e.g. all the related timeouts. Therefore, agents receive
information about the instructions they have to use, and then simply start following
them.

The initiator issues call for proposals (CFP) by specifying an action he wants to
be executed. To simplify our discussion without loss of generality, we suppose that
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such an action is a term with two variables: (i) one is bounded by the participant
with information about his proposal, and is used by the initiator to evaluate which
proposals have to be accepted; (ii) the other is bounded by the participant after exe-
cuting the action, and will contain the result of the execution. For instance, suppose
a participant gets aware of a CFP for buying goods, due to the perception of term
newCFP(buy(good name, v prize, v qty)); he makes a proposal (with 1000 as prize)
by action propose(buy(good name, 1000, v qty)), and later notifies the result of buying
5 items by result(buy(good name, 1000, 5)). This allows us to specify instructions for
the participant with the general schema:

. . .?newCFP(v). . . .!propose(v). . . .!result(v). . . .

as the variable v can get specialised further by substitution of variables to terms at each
step, thanks to the operational rules [ACT] and [PER].

5.1 Instructions for the Participant

Instructions for participants are described by definition Np as follows:

Np(v) := !(1)getCFP(v).(
?1finished+
?1newCFP(v).(

!(2)refuse(v).Np(v)+
!(2)propose.(v).(

?2rejected.Np(v)+
?2accepted.#!(3)fail.Np(v)+!(3)result(v).Np(v)$kPε

) ) )

The participant first executes action getCFP, in order to receive information about a
currently pending CFP. By completion finished, he perceives the fact that his participation
to the collaboration is over, because e.g. the initiator has terminated his work, or the
participant is banned from the collaboration by the artifact. Alternatively, the completion
newCFP is perceived meaning that a CFP has been raised: its actual content — the
requested proposal — is stored in variable v. As the CFP has been received, the agent
can either refuse the CFP by action refuse (and then recursively invoke the instructions
in order to participate to a new CFP), or make a proposal through action propose. If a
proposal is made, it can be either accepted or rejected by the artifact, represented by
perceptions accepted and rejected. In the case of acceptance, the participant is meant to
execute the requested action, eventually notifying the result by action result or a failure
by fail. In particular, these two actions are associated with a timeout of kP time units. If
this expires, instructions are violated (ε), otherwise the action is executed and the whole
protocol is executed again by the recursive invocation to Np.
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5.2 Instructions for the Initiator

Instructions for the initiator are described by definition Ni as follows:

Ni(v) := !(1)CFP(v).(
Ni reply(v)||
#?1finished.Ni(v)$kIFε

)

Ni reply(v) := #?1new prop(v).(Ni reply(v)||Ni handler(v))$kINε

Ni handler(v) := !(3)reject(v)+
!(2)accept(v).[?2fail ]kIF#?2result(v)$kIRγ

The initiator first issues a CFP by executing action CFP(v), specifying the requested
proposal. Then he spawns two parallel sub-instructions: (i) he invokes Ni reply that will
handle all the replies to the CFP; and (ii) waits for perception finished, meaning no other
proposals will be available, with a deadline of kIF time units: if the deadline expires
the whole instructions will be considered violated (ε). Definition Ni reply waits for a
proposal new prop to be perceived, guaranteeing (γ) the agent to receive one within kIN

time units. As the proposal is perceived the agent spawns two sub-instructions again: (i)
he recursively invoke Ni reply to obtain new perceptions, and (ii) he invokes instructions
Ni handler to handle the proposal just arrived. This basically rejects or accepts the
proposal: in the case this is accepted, it waits for the result or a perception about a failure
with a deadline of kIR time units.

5.3 Mentalistic Semantics to Actions and Perceptions

The execution of actions by participants and initiator is not only guided by the require-
ment to follow the operating instructions — which would hardly be sufficient to make
the agent meaningfully carry on the protocol — but also leverages preconditions and
effects, shown as follows:

ACTION Precondition PERCEPTION Effect
getCFP - newCFP(v) -

finished -
refuse(v) B ¬feasible(v) none
propose(v) B feasible(v) rejected -

accepted -
fail ¬B feasible(v) none

result(v) B done(v) none
CFP(v) ¬B done(v) finished -

new prop(v) -
accept(v) - fail -

result(v) B(v)
reject(v) - none
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Notice that in our approach, since intentions are driven by operating instructions and
preconditions/effects relate interactions only to agent beliefs, then such preconditions
and effects are sensibly simpler and cleaner than e.g. the semantics of FIPA performatives
involved in the Contract Net protocol [2].

More specifically, an action is attached a precondition only if it involves the com-
munication of some information from the agent to the coordination artifact, in which
case it should be properly connected to the agent beliefs. For simplicity, we denote by
B done(a) the fact that the agent believes action a has already been executed, and by
B feasible(a) that he might be able to execute action a . In our case of the Contract-Net
protocol, a participant (i) refuses to make a proposal if he believes he cannot execute
the action (B¬feasible(v)), (ii) makes a proposal if he believes he can execute its action
(B feasible(v)), (iii) produces a failure message if he no longer believes the action can
be executed (¬B feasible(v)), and finally (iv) he provides a result only if he believes
the resulting action has been executed (B done(v)). Notice e.g. that without this last
precondition, it would have been impossible for the agent to understand from the oper-
ating instructions what to inform, which is now instead clear from the conjunction of
preconditions, effects, and operating instructions.

Analogously, effects have to be specified only when the interaction protocol reaches a
point where the agent is receiving some information that should change his perception of
the world — not all the times he changes his assumptions about the protocol state as e.g.
in FIPA ACL. Therefore, for the Contract-Net protocol case, effects have to be specified
only when the initiator perceives the positive completion to the accept : in this case the
instructions tell him to believe the result. Notice that we never consider preconditions
and effects as prescriptive, but rather as suggestions for agents to act in meaningful way,
to maximise the benefits when using the artifact: each aspect that should be checked
against violations have to be addressed at the level of interaction protocol.

5.4 The Role of the Coordination Artifact

Finally, it is interesting to point out the role played by the coordination artifact in this
coordination scenario. As far as providing a coordination task is concerned, the coor-
dination artifact can be understood in terms of an interactive behaviour [23], namely
allowing agents to execute actions and providing the proper perceptions consistently
with respect to the operating instructions of each agent. This is obtained by means of the
proper coordination rules stored and realised in the artifact. Provided that such coordi-
nation rules are quite fundamental to implement an effective and efficient Contract-Net
protocol scenario, one should notice that they do not make into our semantics of inter-
action, since the agent only perceives their effect through the operating instructions. In
particular, in our framework agents participate in a collaboration without a necessary
knowledge about the identity (and even the presence) of other agents: their viewpoint
over coordination is rather subjective, for the artifact has the burden of the objective part
of coordination [9].

This is not a limitation bur rather a feature of our approach, for the artifact encap-
sulates and hides a significant coordination burden that would otherwise charge each
involved agent. In general, the artifact should be able to satisfy the timing guarantees of
all the agents even though one or more of them violate their own part of the contract.
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Since handling this aspect can be considered a purely coordination task, it is reasonable
to realise it by an ad-hoc policy within the coordination artifact, instead of tackling it
through a complex deliberation inside an agent.

Other nice features of the coordination artifact for the Contract-Net protocol include
its intrinsic decoupling properties. On the one hand, it decouples the information flow
from participants and initiator, e.g. the initiator could handle a large amount of partic-
ipants without significant design changes: indeed, our approach scales better with the
size of the collaborating group. On the other hand, the initiator is not required to initially
know the identity (and even the number) of participants, the coordination artifact is in
charge of making participants perceiving CFPs, allowing the initiator to perceive only
meaningful proposals — e.g. automatically refusing late ones, bad ones, proposals from
agents with bad reputation, etcetera.

The interested reader can refer to [9, 15, 1, 12] for further details on the conceptual
and engineering approach promoted by coordination artifacts.

6 Related Works in ACL Semantics

Our semantic approach is not a competitor of other semantics proposed for MAS in
current and past research. First of all, the motivation goal of our study is different: our
interaction semantics is meant to support an engineering methodology for environment-
based coordination, rather than to define a standardised approach for interoperability of
heterogeneous agents as for ACL semantics. Then, technically our approach applies to
the scenario where interactions are not communications sent and received by agents, but
are related to the execution of actions over coordination artifacts. So, a basic difference
is that our agents are required the ability to follow some specific operating instructions,
rather than a general, standardised ACL.

Nevertheless, our approach tackles some issues raised in the context of existing
proposals for ACL semantics. From mentalistic semantics such as those of FIPA ACL
[2] and KQML [24], we inherited the very idea of connecting an agent rationality with
his interactions by preconditions and effects over the agent mental state. Thanks to
the support of operating instructions, however, we can tackle the main drawbacks of
purely mentalistic approaches — as remarked in the following — while retaining their
advantages in a simple and effective way.

Protocol-based semantics have been proposed to provide a better support to interac-
tion protocols, which can in fact be only indirectly expressed by mentalistic approaches
— as argued in detail in [25, 26]. In [3, 27], the ACL semantics is equipped by a function
associating to each incoming communicative act the set of possible outgoing replies.
From this viewpoint, our methodology based on process algebras is much more expres-
sive, since it not only supports the above mechanism, but flexibly allows to exploit in a
compositional way the operators for choice, sequential composition, parallel composi-
tion, and recursive definitions, as well as including timing aspects. A crucial role is here
played by the framework of process algebras, which is a standard approach to describe
interaction protocols in the distributed systems field.

Another limit of mentalistic approaches is the non-observability of mental properties
(and thus of the outcomes of preconditions and effects to interactions), which makes
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impossible e.g. to check an agent for compliance. This issue is addressed by commitment-
based semantics [4, 5], which interpret communicative acts as manipulations (creation,
deletion,..) of commitments, each made by an agent relative to another agent. Since
communications are observable, also commitments are: so they can be tracked by some
institutional abstraction, which is then in charge of intercepting agent violations.

To a certain extent, a notion of observable commitment is supported in our framework
as well. As agents accept to interact with a coordination artifact they commit, relative
to the artifact, to follow the associated operating instructions, executing actions in the
right sequence and with the required timing. Moreover, each choice made by an agent
when more actions are allowed can be interpreted as the commitment to follow the
corresponding continuation – in the Contract-Net example, accepting a proposal implies
that either a failure notification or the result will be provided. In the case some of these
conditions are violated, the MAS infrastructure can intercept them, and support e.g. legal
addressing.

Finally, our approach has also some relationship with dialogue games [28, 29], where
direct interaction between agents is meant to be ruled by some institutional abstraction —
e.g. by commencement, locution, combination, commitment, and termination rules. The
notion of coordination artifact could be in principle exploited to support the enforcement
of these rules. However, it is worth noting that our approach is here indeed different,
for we consider agents as perceiving the coordination artifact as the abstraction they
interact with.

7 Conclusions

In this paper we addressed the issue of interaction semantics in the framework of co-
ordination artifacts for MAS, which enables an engineering methodology for mediated
interaction significantly different from standard MAS approaches. Our semantics tackles
some of the most relevant issues raised in the context of ACL semantics, such as con-
nection with agent rationality, support for protocols and for social commitments. Also,
the formal framework of process algebras is here used for the first time in the context
of interaction semantics for MAS. This is thanks to the peculiar aspects of coordination
artifacts, which, differently from agents, can be characterised in terms of coordination
rules and operating instructions [1] — i.e. in an operational way.

Future works of this line of research are on implementation in the TuCSoN infras-
tructure [7], where integration with the Agent Coordination Context notion is concerned
[30], and on evaluating the applicability of operating instructions to the conception of a
new approach to ACL semantics as well.
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Abstract. In this paper we propose a computational model for human-agent and 
agent-agent conversation. This model has two fundamental characteristics: (1) it 
takes into account the implicit aspects of conversations by dealing with the non 
literal level of speech acts; (2) it models the dialogization process. 
Theoretically, our model uses a public approach based on social commitments 
and on what we call communicational states. In addition, we consider 
communication as a negotiation process formed by a set of initiative/reactive 
dialogue games. The paper also presents an implementation of our model in a 
multi-agent system called POSTAGE. 

1 Introduction 

For almost a decade, industry and researchers have been seriously considering 
applications involving “conversational interfaces” instead of the classical graphical 
user interfaces [18, 22]. A conversational interface attempts to leverage natural 
aspects of human dialogue and social interaction, and makes user interfaces more 
appealing and approachable for a wide variety of users. Although the current 
conversational interfaces are still simple, we can expect that they will integrate 
several features of human conversations in the future.  

On the other hand, in multi-agent systems, it is widely recognized that 
communication between autonomous agents is a challenging research area [9, 13]. In 
this domain, in order to enable agents to negotiate, to solve conflicts of interest, to 
cooperate, to find proofs, etc., they have to be able not only to exchange single 
messages, but also to take part and to engage in coherent conversations with other 
agents as well as with human users. 

In the last few years, different research works on agent communicational models 
based on commitments [2, 3, 10, 15, 19, 24, 25, 30] and dialogue games [12, 20, 21] 
seem to offer an interesting direction. However, not only the semantics of such 
models are not yet standardized but also to our knowledge, none of them integrate 
features found in human conversations. 
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The phenomena of human conversations we are interested in are those proposed as 
an enrichment of the traditional version of speech act theory: (1) Taking into account 
the non literal level of speech acts [8, 11, 28]; (2) Modeling the dialogization process 
(or conversational sequencing) [8, 26, 29] and (3) Taking into account the influence 
of social relationships [5]. 

More specifically, we think that future agent/user and agent/agent interactions 
should allow the manipulation of indirect speech acts that are commonly used in 
human conversations. In addition, agents involved in such conversations should also 
be able to take into account the conversational sequencing and the influence of social 
relationships. 

To illustrate the problem, let us consider the following dialogue between a human 
user and his conversational agent. 

(1) User: Agent! 
(2) Agent: Yes, sir 
(3) User: Can you send an email to Paul to let him know that I won’t come 

for lunch and can you please also search the best price on internet 
for a Pentium V 

(4) Agent: OK 
(5) User: It’s necessary to contact Adam also 
(6) Agent: What should I tell him? 
(7) User: No, no, I will contact Adam myself 

It is easily observed from this simple dialogue that an agent involved in agent/user 
conversation should reason on:  

1. The indirectness of speech acts: can you send an email to Paul? 
2. The dialogization process: the utterance “it’s necessary to contact Adam” is 

interpreted first by the agent as a directive until the user corrects this situation later 
in the conversation by telling “no, no, I will contact Adam myself”1. 

This paper is a continuation of our prior research [1, 2, 3, 6, 7] that deals with the 
automation of conversations between human agents and software agents as well as 
between software agents. In this paper, we focus on two conversational phenomena: 
indirect speech acts and the dialogization process. More specifically, our aim is to 
propose an agent communicational model with its specific semantics that integrates 
these two phenomena of human conversations. The purpose is to show that our formal 
framework for social commitments can be used as a theoretical background for this 
model. 

The paper is organized as follows. Section 2 presents the theoretical background of 
our approach. Section 3 introduces our communicational model. In Section 4, we see 
how this model deals with and manages indirect speech acts. Section 5 concerns the 
dialogization process. In Section 6 we describe the POSTAGE prototype. Finally, we 
conclude the paper and present some directions for future research. 

                                                           
1 Simply speaking, dialogization concerns the understanding of the communicative intention 

between the interlocutors during the dialogue. 
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2 Theoretical Background 

2.1 Social Commitments 

Our communication model is based on the notion of social commitments. A social 
commitment is a commitment made by an agent (the debtor), that some fact is true or 
to do something. This commitment is directed to a set of agents (creditors) [24]. 
Social commitments are a kind of deontic concept. They can be viewed as a 
generalization of obligations as studied in deontic logic [25]. Indeed, considering their 
deontic nature, these commitments define constraints on the agents’ behavior. The 
agent must behave in accordance to its commitments. For example, by committing 
towards other agents that a certain fact is true, the agent is compelled not to contradict 
itself during the conversation. It must also be able to explain, argue, justify and 
defend itself if another participant contradicts it. In fact, we do not speak here about 
the expression of a belief, but rather about a particular relationship between a 
participant and a statement.  

In our framework, the commitment content is characterized by time tϕ,, which is 
different from the utterance time denoted tu and from the time associated with the 
commitment and denoted tsc. Time tsc refers to the time during which the commitment 
holds. Fig. 1 illustrates the relation between tϕ, tu, tsc. 

 
 
 
 
 

Fig. 1. Times tu, tsc and tϕ 

We denote a social commitment: SC(Ag1, A*, tsc, ϕ, tϕ) where Ag1 the debtor, A* 
the set of the creditors (A*=A/{Ag1}), where A is the set of participants), tsc is the 
time associated with the commitment, ϕ its content and tϕ the time associated with 
the content ϕ. To simplify the notation, we suppose throughout this paper that 
A={Ag1, Ag2}.  

In our approach we interpret a speech act as an action performed by an agent on a 
commitment in order to model the dynamics of conversations. This interpretation is 
denoted:  

Definition 1. SA(Ag1, Ag2, tu, U) =def Act(Ag1, tu, SC(Ag1, Ag2, tsc, ϕ, tϕ)) 

where  =def means “is interpreted by definition as”, SA is the abbreviation of "Speech 
Act", and Act indicates the action performed by the debtor on the commitment. The 
definiendum (SA(Ag1, Ag2, tu, U)) is defined by the definiens (Act(Ag1, tu, SC(Ag1, 
Ag2, tsc, ϕ, tϕ))) as an action performed on a commitment. The agent that performs the 
speech act is the same agent that performs the action Act. Act can take one of four 
values: Create, Withdraw, Violate and Fulfill. These four actions are the actions that 
the debtor can apply to a commitment. This reflects only the debtor’s point of view. 
However, we must also take into account the creditors when modeling a conversation 

tu tϕ 

tsc 
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which is, by definition, a joint activity. We thus propose modeling the creditors’ 
actions which do not apply to the commitment, but to the content of this commitment. 
The semantics associated with this type of actions is expressed in a dynamic logic [3]. 
This semantics is different from the temporal semantics proposed in [19, 25 and 30] 
and from the operational specification proposed in [15]. Unlike these semantics, our 
semantic differentiates commitments as static structures from the operations applied 
to these commitments as dynamic structures. In our framework, all communicative 
acts are actions that agents apply to commitments. This enables us to describe more 
naturally the evolution of the conversations as a system of states / transitions which 
reflects the interaction dynamics. Hence we redefine a speech act as follows: 

Definition 2. SA(Ag1, Ag2, tu, U) =def       
 Act(Ag1, tu, SC(Ag1, Ag2, tsc, ϕ, tϕ)) 
| Act-content(Agk, tu, SC(Agi, Agj, tsc, ϕ, tϕ)) 

where i, j∈{1, 2} and (k=i or k=j). Agent Agk can thus act on the content of its own 
commitment (in this case we get k=i) or on the content of the commitment of another 
agent (in this case we get k=j).  
For example, the utterance:  

U: "I met agent Ag3 on MSN one hour ago" 

leads to the creation of the commitment:  

SC( Ag1, Ag2, tsc, Meet(Ag1, Ag3, MSN), tsc – 1h). 

The creation of such a commitment is an action denoted:  

Create(Ag1, tu, SC( Ag1, Ag2, tsc, Meet(Ag1, Ag3, MSN), tsc–1h)). 

2.2 Taxonomy 

In this section, we explain the various types of social commitments we use in our model:  

A. Absolute Commitments (ABC): They are commitments whose fulfillment does not 
depend on any particular condition. Two types can be distinguished:  
A1. Propositional Commitments (PCs): They are related to the state of the world and 
expressed by assertives.  
A2. Action Commitments (AC): They are always directed towards the future and are 
related to actions that the debtor is committed to carrying out. This type of 
commitments is typically conveyed by promises.  

B. Conditional Commitments (CC): In several cases, agents need to make 
commitments not in absolute terms but under given conditions. Conditional 
commitments allow us to express that if a condition β is true, then the creditor will be 
committed towards the debtor to making γ or that γ is true.  

C. Commitment Attempts (CT): The social commitments described so far directly 
concern the debtor who commits either that a certain fact is true or that a certain 
action will be carried out. These commitments do not allow us to explain the fact that 
an agent asks another one to be committed to carrying out an action. To solve this 
problem, we propose the concept of commitment attempt. We consider a commitment 
attempt as a request made by a debtor to push a creditor to be committed. 
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3 The Communicational Model 

Computationally speaking, a conversational model should possess a communicational 
model to which we integrate the phenomena we are interested in. Our communication 
model is based on the following fundamental principles: 

• Communication is considered as a negotiation process [17, 23]. This process is 
formed by a set of initiative/reactive dialogue games [12, 21].  

• Communication results in a manipulation of social commitments [1, 10, 20, 24]. 
• Agents use their private mental states to manipulate social commitments. 

We adopt these principles in our approach and we consider agents' communication 
as actions applied on commitments and as exchanges of what we call 
communicational states2 (CS). Fig. 2 illustrates our communication model. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. The communicational model 

A CS is characterized by one of five types, each type corresponding to a 
performative type as defined by Vanderveken [27]. Since we consider that agents 
communicate by conversing, a CS is similar to a speech act and is used by an agent to 
express its communicative intentions. However, a CS differs from a speech act in the 
sense that (1) a CS is associated to a negotiation positioning and (2) a CS is not 
composed of seven components as it is the case for a speech act [27]. A CS is also 
expressed in terms of social commitments.  

A directive CS performed by an agent Ag1 toward an agent Ag2 at time t concerning 
the propositional content p has the following form3: DIR(Ag1, Ag2, t, p, tp) where tp is 
the time associated to the content p. A directive CS is defined as a commitment 
attempt: 

Definition 3. DIR(Ag1, Ag2, t, p, tp) =def CT(Ag1, Ag2, tct, p, tp)  

where t = tct.   
The other types of CS are ASS for an assertive, DECL for a declarative, COMMIT 

for a commissive and EXPR for an expressive. To represent explicitly the conditional 
aspect of assertives and commissives, we add two other types of CS: CON-ASS for 
                                                           
2  We chose the term "Communicational State" analogously to the term "Mental State". 
3  For the formalization of communicational states, we have been inspired by the work of [13]. 
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conditional assertives and CON-COMMIT for conditional commissives. An assertive 
CS is defined as a propositional commitment and a conditional assertive is defined as 
a conditional commitment about a proposition (Definition 4). A declarative and an 
expressive CS are defined as propositional commitments (Definitions 5 and 6). 
Finally, a commissive CS is defined as an action commitment and a conditional 
commissive is defined as a conditional commitment about an action (Definition 7).   

Definition 4. ASS(Ag1, Ag2, t, p) =def PC(Ag1, Ag2, tpc, p, tp) 
  CON-ASS(Ag1, Ag2, t, p1, tp1, p2, tp2) =def CC(Ag1, Ag2, tcc, p1, tp1, p2, tp2) 

Definition 5. DECL(Ag1, Ag2, t, p, tp) =def PC(Ag1, Ag2, tpc, p, tp) 

Definition 6. EXPR(Ag1, Ag2, t, p, tp) =def PC(Ag1, Ag2, tpc, p, tp) 

Definition 7. COMMIT(Ag1, Ag2, t, α, tα) =def AC(Ag1, Ag2, tac, α, tα) 
  CON-COMMIT(Ag1, Ag2, t, p, tp, α, tα) =def CC(Ag1, Ag2, tcc, p, tp, α, tα) 

where p is a propositional formula and α is an action symbol. 
Communication is considered as a set of initiative/reactive dialogue games in 

which agents negotiate about CSs. In other words, agents negotiate the acceptance or 
the refusal of CSs. An agent proposes a CS (initiative dialogue game) and other 
agents react to this proposal by accepting, rejecting the proposed CS, asking for 
further information, etc. (reactive dialogue game). Thus, a negotiation positioning is 
associated to a CS. Since finding a settlement is not the main goal of our negotiation 
process, this process is different from the negotiation dialogue defined in Walton and 
Krabbe’s typology [31]. On the other hand, this process is similar to the persuasion 
dialogue that arises from a conflict of opinions and whose goal is to solve the conflict. 
In our framework, a positioning takes the following form: 

POSIT(Ag1 , Ag2, t , CS( Ag1, Ag2, t, ϕ, tϕ)) 

where CS∈{DIR, ASS, DECL, EXPR, COMMIT, COND-COMMIT} 
which represents the positioning of agent Ag1 toward agent Ag2 at time t with respect 
to a communicational state CS.  

The positionings we consider are the proposition PROPOSE, the acceptance 
ACCEPT and the refusal REFUSE of a CS. We also add the special INQUIRE 
positioning for asking questions. We distinguish two types of INQUIRE. The first 
type requires a Yes/No answer. The second type requires an answer substituting a set 
of free variables X in the propositional content by a certain valuation. We denote a 
formula ϕ in which appears a sequence of free variables X by ?Xϕ. These two types of 
INQUIRE are denoted as follows: 

INQUIRE(Ag1, Ag2, t, CS(Ag1, Ag2, t, p, tp), Yes/No?) 
INQUIRE(Ag1, Ag2, t, CS(Agi, Agj, t, ?Xϕ, tϕ)) 

where i, j∈{1, 2} and i≠j. 
A positioning with respect to a communicational state CS is defined as an action 

applied by an agent on a social commitment SC or on the content of a social 
commitment: 



 Dialogization and Implicit Information in an Agent Communicational Model 199 

 

Definition 8. POSIT(Ag1 , Ag2, t, CS(Ag1, Ag2, t, ϕ, tϕ)) =def  
Act(Ag1, tu, SC(Ag1, Ag2, tsc, ϕ, tϕ)) 
| Act-content(Agk, tu, SC(Agi, Agj, tsc, ϕ, tϕ)) 

where i, j∈{1, 2} and (k=i or k=j). 
For example, the proposition of a CS is defined as a creation action of a commitment 
(Definition 9). The commitment type depends on the type of the CS as specified by 
Definitions 4, 5, 6 and 7. 

Definition 9. POSIT(Ag1 , Ag2,tu, CS(Ag1, Ag2, t,ϕ, tϕ)) =def  

Create(Ag1, tu, SC(Ag1, Ag2, tsc, ϕ, tϕ)) 

Let us take the following simple dialogue between agents Ag1 and Ag2. 

(SA1) Ag1: Print the document number 5 
(SA2) Ag2: Ok! 

The speech act SA1 is represented by the proposal of a directive: 

PROPOSE(Ag1, Ag2, t1, CS1) 

where CS1 represents DIR(Ag1, Ag2, t1, print(AGT(Ag2), OBJ(document-5))) 
Ag1 is proposing to Ag2, at time t1, a directive in which Ag1 is asking Ag2 at time t1 

that agent Ag2 print the object document 5. The speech act SA2 is represented by the 
acceptance of the first directive:  

ACCEPT(Ag2, Ag1, t2, CS1) 

Ag2 is accepting, at time t2, the directive proposed at time t1 where Ag1 is asking Ag2 
to print the document 5. 

Furthermore, it is easy to notice that usually human conversants are able to recall 
the utterances (at least the most important ones) that have been exchanged during a 
conversation along with the locutors’ positionings. In our approach, we consider that 
the exchanged CSs are recorded into a conceptual structure called the conversational 
trace. Using the conversational traces of both agents, this dialogue is represented in 
Fig. 3. It is important to mention that each agent possesses its own conversational 
trace and thus its own viewpoint of the communication. This assumption of no central 
agent (called also external observer) is considered in other agent models. It is the case 
  

 Conversational Trace 

CS1 

Agent 
Ag1 

Agent 
Ag2 

A1 PROPOSE 

(t1) "Print the document number 5" 

A2 ACCEPT 

t1 t2 

Conversational Trace 

CS1 
t1 t2 

A2 ACCEPT A1 PROPOSE 

(t2) "Ok !" 

 

Fig. 3. Conversational traces of agents Ag1 and Ag2 
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for [4] where agents detect ontological discrepancies during communication on the 
basis of their own subjective view on the world.  

Our communicational model is based on a negotiation process in which agents 
(human or artificial) are negotiating on CSs. Agents record all the negotiation 
positionings as well as the CSs during the conversation process. Let us see now how 
this model can be used in order to deal with the non-literal level of speech acts. 

4 Implicit Information 

It is easily observed that human locutors use indirect speech acts more frequently than 
direct speech acts. For instance, when a manager says to his secretary “Can you print 
the document number 5?”, his utterance should be interpreted as a polite way of 
ordering her to print the document (non literal interpretation) and not as a question 
about her ability to print (literal interpretation). Also, the question asked by the user to 
his agent (in the first dialogue) “Can you send an email to Paul?” should be 
interpreted too as a directive speech act.  

In order to take into account this conversational phenomenon, we suggested to 
model implicit information conveyed by speech acts [6]. Given a speech act SA 
performed by locutor L1 and directed to locutor L2, we define the implicit information 
conveyed by SA as the information that L1 intends to transfer to L2 and which is 
different from SA’s propositional content. For example, the implicit information 
associated with the question “Can you send an email to Paul?” is the request to send 
the email. To our knowledge, no current implementation of software agents integrates 
this aspect in its communicational model. Implicit information can be compared to 
presuppositions that Beun et al. [4] are using in their model. Indeed, in that model, 
agents extract presuppositions from incoming messages on the basis of the pragmatics 
of the communication language. 

In order to provide a mapping between implicit and explicit information, we use 
knowledge structures called conversational schemas that are similar to conversational 
postulates that Gordon and Lakoff proposed to interpret indirect speech acts [16]. 
Conversational schemas specify conversational conventions that apply in a given 
socio-organizational context. A conversational schema can be used by an agent either 
for choosing a speech act that reflects its communicative intention, or for interpreting 
other agents’ speech acts. For example, the conversational schema of the above 
example could be formulated by the following definition: 

Definition 10: INQUIRE(Ag1, Ag2, t, CS(Ag1, Ag2, t,  
HAS-CAPACITY(AGT(Ag2),OBJ(Prop)), Yes/No?)=def 

PROPOSE(Ag1, Ag2,t, DIR(Ag1, Ag2, t, Prop))  

 A conversational schema has the following form: 

CONV-SCH “ident” 
Context 
Characteristics 
Communicative intention 
Explicit information 
Communicative Expectation 



 Dialogization and Implicit Information in an Agent Communicational Model 201 

 

Each agent possesses a set of conversational schemas. This set represents its 
knowledge of the conversational practices of the society to which it belongs. The set 
of conversational schemas that agents share could be considered as part of the 
common conversational ground of these agents. The Characteristics slot has two 
components. The first component concerns the illocutionary strength, which is 
quantitative, and allows the agent to have different formulations for the same 
communicative intention. The second component is the refusal option that indicates if 
the agent can refuse a given directive. When an agent wants to express a certain 
Communicative intention, it chooses a conversational schema depending on the social 
and personality context. This conversational schema gives it the corresponding 
formulation in the Explicit information slot. The slot Communicative Expectation will 
be explained in the next section. 

For example, the corresponding conversational schema for a “polite request” is 
formulated as follows:   

CONV-SCH “polite request”  
Characteristics: illoc-strength(0), refusal-option(yes)  
Communicative intention:    

PROPOSE(Ag1, Ag2 t, DIR(Ag1, Ag2, t, Prop))  
Explicit information:   

INQUIRE(Ag1, Ag2,t, CS(Ag1, Ag2, t,  
HAS-CAPACITY(AGT(Ag2),OBJ(Prop)), Yes/No?)   

The above “polite request” conversational schema is used by an agent Ag1 toward 
an agent Ag2.. This conversational schema has illocutionary strength of 0 and it 
concerns a directive CS (DIR), which gives a refusal option to the interlocutor. In this 
CS, agent Ag1 has the intention to propose a directive to agent Ag2 and for this 
purpose, it will publicly perform an inquire (INQUIRE) asking agent Ag2 about its 
capacity to do the needed action expressed by Prop. Indeed, explicit information 
indicates the action applied by the agent on a social commitment.  

In order to take into account the explicit and implicit information managed by an 
agent during a dialogue, we divided the conversation trace into two categories: an 
explicit conversational trace in which it records the public utterances and an implicit 
conversational trace in which it records the intentional utterances. This aspect is 
detailed in the next section. Let us mention that we plan to extend our approach in 
order to take into account the influence of social relationships during the interaction. 
Indeed, according to [5], there is little doubt that social relationships influence the 
way people interpret indirect speech acts.  Some preliminary results of this extension 
could be found in [6]. 

5 Dialogization 

Dialogization is based on the understanding of the communicative intention between 
interlocutors during the dialogue. In other agent frameworks [4], this phenomenon is 
called feedback. The schema of the dialogization process is shown in Fig. 4. During 
the first stage, an initiator agent Ag1 makes an initial proposal corresponding to its 
communicative intention. It waits for the positioning of its interlocutor agent Ag2 
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regarding this proposal. If Ag2’s positioning matches what Ag1 was expecting as an 
answer, then it concludes that Ag2 understood its communicative intention and in this 
case it can go ahead and make another proposal. In the case in which Ag2’s 
positioning doesn’t match what Ag1 is expecting, then it concludes that Ag2 didn’t 
understand its communicative intention and reacts by expressing its communicative 
intention more explicitly. This is done by the choice of a different conversational 
schema in which the communicational intention and explicit information slots are 
almost the same.  

 

Fig. 4. The dialogization process 

We still need to provide a way to determine if the agent’s intention has been 
understood or not by its interlocutor. This is the role of the Communicative 
Expectation slot of a conversational schema. In our approach, an agent Ag1 determines 
if the intention corresponding to its initial speech act has been recognized by the 
interlocutor agent Ag2, if Ag2’s speech act matches the Communicative Expectation. 
For instance, the actual ”polite request” conversation schema is: 
CONV-SCH “polite request”  

Characteristics: illoc-strength(0), refusal-option(yes)  
Communicative intention:    

PROPOSE(Ag1, Ag2, t1, DIR(Ag1, Ag2, t1, Prop))  
Explicit information:   

INQUIRE(Ag1, Ag2, t1, CS(Ag1, Ag2, t1,  
HAS-CAPACITY(AGT(Ag2),OBJ(Prop)) , Yes/No?)   

Communicative Expectation: 
ACCEPT(Ag2, Ag1, t2, DIR(Ag1, Ag2, t1, Prop)) 

This conversational schema states that Ag1 will expect Ag2 to accept its proposal of 
the implicit directive even if Ag1 publicly asks Ag2 about its capacity of doing the 
needed action (represented by Prop). 

Let us take as an example the following dialogue illustrating the dialogization 
phenomenon.  

 

 
Proposition of a locutor 

React 

Locutor observes the 
positioning of his interlocutor

Intention understood ?
Yes No
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(1) User: It’s necessary to contact Adam 
(2) Agent: What should I tell him? 
(3) User: No, no, I will contact Adam myself 
(4) Agent: OK! 

The agent interpreted the first user’s utterance as a directive, while the user 
actually intended only to express an assertive. The agent responded to the directive 
by asking information about the way to execute it. The user expecting an 
acceptance of the assertive, reacts to this question, and expresses his assertive more 
explicitly. The corresponding conversational traces - both implicit and explicit - of 
the user are illustrated in Fig. 5. An oval shape represents a CS. Using a plain line,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Implicit and explicit conversational traces of agents Ag1 and Ag2 
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each CS is associated to a rectangular shape representing a given position with its 
time point (e.g. Ag1 PROPOSE CS1 at t1). Using dashed lines, the negotiation 
positioning (position and CS) are associated to gray background rectangles that 
represent the Conversational Schema the user is using to interpret the negotiation 
positioning (e.g. Ag1 PROPOSE CS2 at t1 use of ConvSc (impersonal 
inform) Ag1 PROPOSE CS1 at t1). 

At time t1, Ag1 wants, at the implicit level, to propose an assertive ASS CS1 
consisting of contacting Adam. This is represented by the structure:  

PROPOSE(Ag1, Ag2, t1,  ASS(Ag1, Ag2, t1, contact(AGT(Ag1), PTNT(Adam) ))) 

Using the conversational schema ‘impersonal inform’, the user Ag1 translates the 
proposition of CS1 to a proposition of another assertive CS2 in which the agent is 
unknown. This assertive that becomes public has the structure: 

PROPOSE(Ag1, Ag2, t1, ASS(Ag1, Ag2, t1, contact(AGT(?A), PTNT(Adam) ))) 

At the same time, Ag1 expects from Ag2 to accept CS1: 

ACCEPT(Ag2, Ag1, t2, ASS(Ag1, Ag2, t1, contact(AGT(Ag1),PTNT(Adam) ))) 

Using the conversational schema ‘impersonal request’, agent Ag2 who receives this 
proposition determines in its implicit conversational trace that Ag1 is requesting it to 
contact Adam (CS3). At time t2, Ag2 implicitly accepts the directive and publicly asks 
Ag1 how to do that action, using the conversational schema ‘react to a directive’. At 
this time, Ag1 observes that Ag2 is accepting a directive but not an assertive:  

ACCEPT(Ag2, Ag1, t2, DIR(Ag1, Ag2, t1, contact(AGT(Ag2), PTNT(Adam) ))) 

Ag1 understands that Ag2 used the conversational schema ‘impersonal request’ to infer 
CS3 from CS2. Thus, what Ag1 is expecting does not match the answer of Ag2. This 
leads Ag1 to react in order to state his first communicative intention. He uses for this 
purpose, at time t3, a more explicit conversational schema ‘react for an assertive’: 

PROPOSE(Ag1, Ag2, t3, ASS(Ag1, Ag2, t3, contact(AGT(Ag1), PTNT(Adam) ))) 

At time t4, Ag2 accepts CS1 implicitly and publicly by using the conversational schema 
‘acceptance of an assertive’. The acceptance of Ag2 means for Ag1 that Ag2 understood 
the intention since the answer matches the communicative expectation: 

ACCEPT(Ag2, Ag1, t4, ASS(Ag1, Ag2, t3, contact(AGT(Ag1), PTNT(Adam) ))) 

In this section, we explained how the dialogization process can be modeled using 
our model. Indeed, adding a communicative expectation to a conversational schema 
allows agents to reason on that process: they compare their interlocutors’ positioning 
with their expectation and react accordingly. 

The time complexity of the algorithm implementing this process is linear in the 
size of the communicative intention bases |CBAg1 + CBAg2| that are a kind of the 
knowledge bases of the two agents. It is also linear with the number NCSAg1 + 
NCSAg2 of the conversational schemas that the two agents can use. Because we 
associate to each communicative intention n conversational schemas (n ≥ 1), the time 
complexity is only linear in the number of the conversational schemas, i.e. 
Ο(max(NCSAg1, NCSAg2)).  
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6 The POSTAGE Prototype 

In large and small organizations, correspondence between users exists in various forms: 
formal and informal letters, memos, notices, etc. Developing a software agent taking 
care of the administrative correspondence would greatly benefit to the user: (1) the user 
is not obliged to remember all the formulations used in his/her organization thanks to 
the use of conversational schemas; (2) The user can be informed about the different 
interpretations of a message thanks to the dialogization process done by the agent. 

The POSTAGE (POSTman AGEnt) agent can formulate a user’s message in an 
informal way which agrees with (1) the user communicative intention and (2) the 
formulation rules used in a particular organization. For example, the informal 
message "You are laid off" would be transformed into "As general manager, I deeply 
regret having to announce your dismissal from our company". For the present work, 
we have chosen the university organization as an example for the development of the 
prototype. A POSTAGE agent has a specific architecture that allows it to perform the 
correspondence task (Fig. 6). This architecture is divided into two parts. The first part 
includes four knowledge models and the second one three execution modules. The 
user's model contains knowledge concerning the user such as his/her preferences and 
his/her social relationships with other users. The static knowledge contains plans and 
specific formulation schemas. A formulation schema is used by the agent to find a 
natural language expression for a given conversational schema. 

 

Communication module

Planner 

Learning module 

Static knowledge
model 

User's model

Mental model Communicational 
trace 

Interface

POSTAGE Agent

POSTAGE Agent 

 

Fig. 6. Architecture of a POSTAGE agent 

The other modules are the communicational trace and the mental model. The 
planning module allows the agent to create messages on the basis of the elements 
selected by the user. The task of the learning module is to learn new knowledge such 
as user's preferences or formulations used in a given organization. The 
communication module receives a request from the planning module and determines 
the corresponding negotiation positionings. 

Let us show an example using the conversational sequencing reasoning of the 
POSTAGE agent (Fig. 7). Consider two users Viviane and Brigitte with their 
corresponding agents. Viviane sends a first message to Brigitte by selecting as a 
subject ”Update of web pages”. Viviane clicks on the generate button and the agent 
proposes the text ”Can you please update the web pages?”. When Brigitte’s agent 
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receives the message, it notices that this text has two possible interpretations, and asks 
Brigitte the interpretation she prefers. In this example, Brigitte takes the literal 
interpretation. When Viviane’s agent receives the answer, it automatically 
understands that the answer does not correspond to Viviane expectation, informs her, 
and proposes her to re-express her intention more explicitly. In this case, Viviane’s 
agent proposes the text ”No, I am asking you to update the web pages”. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. The conversational sequencing 

7 Conclusion and Future Work 

In this paper we proposed a computational model for human-agent and agent-agent 
conversation. This model deals with the implicit aspects of conversations and the 
dialogization process. The implicit aspects is captured by taking into account the non 
literal level of speech acts. The dialogization process is treated by considering 
communication as a negotiation process of social commitments. This process is 
formed by a set of initiative/reactive dialogue games. 

As future work, we intend to integrate the influence of social relationships in our 
framework and to improve our prototype by using real corpora. We also intend to 
integrate argumentation issues to capture the reasoning aspect of agents. 
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Abstract. Recent work in the design of agent interaction protocols has focused
on applications involving dialectical argumentation — the giving and receiving of
reasons for statements. Yet the most widely-known language for agent communi-
cations — the FIPA ACL — lacks locutions for such argument. Drawing on both
speech act theory and the philosophy of communicative action, we first present a
novel typology of speech acts for agent communications. We use this as the basis
for proposing an interaction protocol, called Fatio, comprising five locutions we
consider necessary for argumentation, and which may be added to the FIPA ACL.
Both an axiomatic and an operational semantics for the Fatio Protocol are given.

1 Introduction

The last decade has seen considerable attention devoted to designing generic communi-
cation languages for agent interactions. The most widely-known of these languages is
the Foundation for Intelligent Physical Agents’Agent Communication Language (FIPA
ACL) [7]. Although the leading standard, FIPA ACL has been criticized on several
grounds, for example: that it requires co-operative agents and sincerity [20]; that its
axiomatic semantics SL cannot be verified in open systems [28]; that specific locutions
have inappropriate semantics [20]; and that it does not readily facilitate the expression
of self-transformation, the process by which agents change their beliefs, preferences or
intentions as a result of their interactions with one another [17].

This paper will address another criticism previously made of the FIPA ACL: that it
encodes an impoverished theory of argumentation [17].Agents participating in a dialogue
using FIPA ACL have only limited means to question or contest information given to
them by others; indeed, there are even limitations on what information may be confirmed
[20]. Moreover, the semantics defines the post-conditions of utterances only in terms of
their effects on the mental states of hearers; there are no rules concerning combinations of
locutions, or the dialectical obligations of the participants, such as requiring questions to
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be answered, or requiring that assertive statements be justified when challenged. In part,
this weakness is due to the implicit assumption of the participants being co-operative;
fully co-operating agents, presumably, do not lie, obfuscate or prevaricate. In part also,
the lack of a rich argumentation structure is due to a semantics defined without reference
to time and only in terms of single locutions, rather than in terms of conversations or
protocols [20, 26].

From the perspective of a designer of an open agent system comprising intelligent,
autonomous and self-interested agents the absence of a sophisticated and explicit argu-
mentation theory for the agent interaction protocol is a serious obstacle. In open systems,
the beliefs of agents may not coincide, and so their interactions will require dialogues
involving information seeking, information provision, mutual inquiry and persuasion;
similarly, their intentions may also not coincide, and so their interactions will require di-
alogues involving persuasion, commands, negotiation and deliberation [27]. This need
explains the recent attention given in the multi-agent systems literature to the design
of protocols for argument-based interaction, eg, [1, 13, 14]. Indeed, even in models of
decision-making by a single agent the essential role of argument-based reflection and
evaluation has recently been emphasized, e.g., [23].

But no widely-accepted locutions or protocols yet exist for the requesting and provid-
ing of reasons for beliefs and intentions between software agents. The main contribution
of this paper is to propose a set of locutions which serve precisely this purpose. These
locutions are presented in the form of an interaction protocol, the Fatio protocol (Section
3), which may be used by a system designer as a stand-alone protocol or may be incor-
porated into other protocols and ACLs, such as FIPA ACL. The definition of the protocol
is undertaken within a novel typology of speech acts, which we propose in Section 2.
An axiomatic and an operational semantics for the protocol are given in Section 4. An
example application is presented in Section 5, and the paper concludes with a discussion
in Section 6.

2 Types of Speech Acts

Before presenting our argumentation protocol, we first present a syntactic classification
of agent speech acts, based on the earlier classifications of John Austin [2], John Searle
[22] and Jürgen Habermas [10]. Both Austin and Searle developed their classifications at
a time when the prevailing approach to the semantics of propositions in the philosophy of
(human) language was truth-conditional. Under this semantics, due originally to Gottlob
Frege and Alfred Tarski, if an agent A claims to believe some proposition P, then the
relevant semantic question is: “Is P true?” This view of meaning has been criticized,
most prominently by Michael Dummett [5] and Crispin Wright [29], on the basis that
for most assertive statements we cannot answer this question definitively; for example,
almost all propositions about the past or the future have an inherent uncertainty. At best,
we can find evidence for believing P rather than for holding some contrary belief. A
better question, therefore, would be: “Can agent A justify his belief in P?” This is the
essence of verificationist semantics.

Habermas, in his philosophy of communicative action, extended verificationist ideas
to statements other than those concerning factual propositions [10], for example, to
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expressions of preference and to imperative statements. In doing so, he asked how such
statements may be justified. One may justify a command, for example, by reference to
some social relationship in which the speaker is superior to the hearer. This viewpoint
led Habermas to revise Searle’s typology of speech acts [10–pp. 325–326], and we have
used this revised typology as the basis for our own classification. Our typology is based
on, firstly, the entities referenced by the utterance, for example: states of the real-world,
internal mental states of the speaker, or the social relationships between participants;
and secondly, on the nature of attacks which may be made on an utterance of each type.
These attributes are described below and summarized in Table 1.

Table 1. Typology of Speech Acts

No. Type Referants Basis of Attack

1 Factual Statements Real-world states Verifiability
2 Expressive Statements Internal mental states of Speaker Sincerity
3 Social Connection Statements Social relations Normative rightness
4 Commissives Social relations Sincerity

Internal mental states of Speaker Feasibility
Consequences
Efficacy
Etc

5 Directives Social relations Normative rightness
Internal mental states of Speaker Feasibility
Internal mental states of Hearer Consequences

Efficacy
Etc

6 Inferences Consequences of earlier utterances Inferential validity
7 Argumentation Statements Content of utterances Dialogical rightness
8 Control Statements Form of utterances

1. Factual Statements: These are statements which claim to represent the state of the
external world, and so may be objectively-verified. Examples are statements of belief
about factual matters. For these statements, reasons for belief may be requested and
provided. Contesting such a statement means denying that it is a true description of
the reality external to the dialogue. Defending such a statement involves providing
objective verification for it, or the provision of means by which it may be objectively
verified.

2. Expressive Statements: These are statements which seek to represent the state of the
internal world of the speaker, i.e., they aim to reveal publicly a subjective preference,
a value assignment, or an intention. As with factual statements, the reasons for a
speaker having the mental states revealed by a value statement may be requested
and provided. However, value statements cannot be objectively verified or refuted;
instead, only the sincerity of the speaker may be challenged. Sincerity of a speaker’s
internal states may be assessed, for example, by the consistency of these; if a speaker
knowingly expresses conflicting intentions, a hearer would be entitled to conclude
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that the speaker is not sincere about one or more intentions. Similarly, assessment
of a speaker’s sincerity may involve issues of trust and reputation, as perceived by
the hearer.

3. Social Connection Statements: These are statements which assert some social or
other relationship between different participants. Examples of such relationships in-
clude: employer and employee; customer and supplier; peers; etc.Again, the reasons
for a speaker asserting a particular connection may be requested and provided; con-
testation of these utterances takes the form of challenging the normative rightness
of the relationship.

4. Commissive Statements: Here, the speaker desires that the world be in a particular
state, and so commits to the hearer to undertake some action or course of action
to establish or maintain this world state. Promises and vows are examples. They
are stronger than merely expressive statements because, if accepted, they create
obligations on the speaker in the world beyond the dialogue. Accordingly, they
make reference to both the internal mental states (eg, desires, intentions) of the
speaker and to the social relations existing between speaker and hearers. Because
they refer to internal states, they may be challenged on the grounds of sincerity. They
may also be challenged on substantive grounds, eg: their direct or indirect costs and
benefits; their opportunity costs; their consequences; their practical feasibility; etc.

5. Directive Statements: Here, the speaker desires that the world be in a particular
state, and so seeks that the hearer commits to undertaking some action or course of
action to establish or maintain this world state. Requests, commands, warnings and
entreaties are examples of these statements. As with commissives, they are stronger
than merely expressive statements because, if accepted, they create obligations on
the hearer to the speaker in the world beyond the dialogue. They make reference
to the internal mental states of both the speaker (eg, desires) and the hearers (eg,
intentions) and to the social relations existing between speaker and hearers. They
may be challenged on all the substantive grounds for which commissives may be
challenged, in addition to contestation of the normative rightness of the social con-
nections required for their valid utterance.

6. Inference Statements: These are statements which refer to the content of earlier
statements in a dialogue, drawing inferences from them or assessing their implica-
tions. Contestation of such statements can take the form of questioning the appro-
priateness or the validity of the inferences made.

7. Argumentation Statements: These are statements which refer to the contents of
prior speech acts, for example, questions, challenges, and requests for justification.
These acts may be attacked on the basis of inappropriateness, timing or dialectical
validity. They may also create dialectical obligations on the part of the speaker and/or
the hearers.

8. Control Statements: These are statements which refer to speech itself, aiming to
synchronize communication. Examples of such statements are requests to repeat an
utterance, or acknowledgments that an utterance was received.

Both commissive and directive statements concern commitments to undertake an
action (or a course of action) to create or maintain a state of the world in which specified
propositions are true. Because of these commitments, the allowable attacks for these
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statements are stronger than are those for expressive statements. Thus, for example,
promising someone to undertake a specific action is a stronger statement than expressing
an intention to undertake it. It is for this reason that we consider commissives as a separate
class of speech act, rather than being considered as a subclass of expressive statements.

Table 2. Classification of FIPA ACL locutions

Locution Type FIPA ACL Locutions

Factual Statements confirm
disconfirm
failure
inform
inform-if
inform-ref
query-if
query-ref

Expressive Statements inform
Social Connection Statements inform
Commissives accept-proposal

agree
propose
refuse
reject-proposal

Directives cancel
cfp
request
request-when
request-whenever

Inferences inform
Argumentation Statements
Control Statements not-understood

propagate
proxy
subscribe

Does the FIPA ACL support all types of statements? To answer this question, we
classified the 22 locutions of FIPA ACL according to our typology (Table 2). As can be
seen, making expressive statements, social connection statements or inferences requires
use of the inform illocution, the same illocution used to make factual statements. This
conflation creates problems for the designer of argumentation-theoretic combination
rules for locutions, for such rules would need to examine the content of an inform
utterance to determine what locutions are valid in response. Moreover, Table 2 also
shows that none of the FIPA ACL locutions relate to argumentation; this supports the
criticism, made in [17], of an impoverished argumentation theory underlying FIPA ACL.

It would be possible to design a new generic Agent Communications Language us-
ing this typology. In doing so, it would be sensible to build on the FIPA ACL, which
(one might argue) is strong in illocutions for factual statements, for commissives and
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for directives. A new generic ACL could also build on the recent work in the agent
communications literature on social semantics, which considers utterances in a dialogue
as means to manipulate inter-participant commitments in some wider social institution
[3, 24]. The work on social semantics therefore provides illocutions by which commis-
sives and directives may be uttered, responded to, and modified, and a framework for
viewing these illocutions. Finally, recent research has also considered illocutions for
inter-participant synchronization, the category of acts we have termed Control State-
ments [19]. Combining all this prior work to design a new generic ACL would be very
ambitious, and so for this paper, we consider only illocutions for argumentation.

3 Protocol Syntax

We now present a protocol for undertaking arguments over statements in a dialogue.
The statements made in the argument may be any of the first six types of illocutions:
factual statements, expressive statements, social connection statements, commissives,
directives, and inferences. Our aim here is to define a concise, generic protocol which can
be used on its own, or incorporated into other interaction protocols or ACLs (including
FIPA ACL).1 For ease of reference, we name the protocol Fatio.2

Our syntax for utterances will be:

illocution(Pi, φ) or illocution(Pi, Pj , φ)

where illocution is an illocution, Pi is an identifier for the agent making the utterance
(the speaker), Pj �= Pi denotes an agent at whom the utterance is directed, and φ is the
content of the utterance. It would also be possible to have an identifier for the intended
recipient (the hearer) of the utterance, but for simplicity we assume all utterances are
made to the entire group involved in the dialogue. For the content of the utterance, any
agreed formal language may be used. We will assume the content layer is represented
in a propositional language, with lower-case Greek letters as propositions. We denote
the set of these well-formed content formulae, closed under the usual connectives, as
C. These propositions may represent objectively-verifiable statements about the world,
or internal preferences, or intentions, or commitments, etc. Because we wish to use the
protocol to exchange justifications for claims, some utterances will also have content
comprising arguments (eg, premises and inference-rules), which will be represented by
upper-case Greek letters. We denote the set of these well-formed argument formulae,
closed under the usual connectives, asA. Note that C is a proper subset ofA. If φ ∈ C is
a proposition in the content language and Φ ∈ A is a justification, we will write Φ %+ φ
to indicate that Φ is an argument in support of φ, and Φ %− φ to indicate that Φ is an
argument against φ. Finally, we assume that time is discrete and may be represented by
the natural numbers, and that precisely one utterance occurs on each time-step. The first

1 If used as a stand-alone protocol, additional locutions for entry to, withdrawal from, and termi-
nation of the dialogue would be necessary [15]. These could be taken from another protocol, eg,
[13].

2 After Nicolas Fatio de Duillier (1664–1753), a Swiss mathematician and polymath, and famous
disputant, on Newton’s behalf, with Leibniz over who had invented the differential calculus [4].
Fatio was also the originator of the “Push” theory of gravity [12].
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utterance of each dialogue is made at time-step 1. For simplicity, we do not include a
time stamp in the syntax.

Before proceeding, we note the differing usages of the word “commitment” in the
agent communications and argumentation literatures.3 In the early dialogue game litera-
ture in philosophy, commitments refer to dialectical obligations incurred by participants
inside a dialogue, and may have no relationship to the true beliefs or actions of the par-
ticipants [11]. More recently, philosophers of argumentation have defined commitments
more broadly, to include actions intended to establish or maintain a particular state of
the world, including states of the dialogue [27]. Commitments as actions external to the
dialogue is closer to usage in agent communications literature, eg, [24].

For the Fatio protocol, we reserve the word commitment to refer only to actions
external to the dialogue: in other words, only commissive and directive statements make
reference to commitments. We use the term dialectical obligations to refer to commit-
ments inside the dialogue, for example, an obligation within a dialogue to defend an
assertion against attack by another participant.

We now define the five legal locutions in Fatio:

F1: assert(Pi, φ): A speaker Pi asserts a statement φ ∈ C (a belief, an intention, a
social connection, an external commitment, etc). In doing so, Pi creates a dialectical
obligation within the dialogue to provide justification for φ if required subsequently by
another participant.

F2: question(Pj , Pi, φ): A speaker Pj questions a prior utterance of assert(Pi, φ) by
another participant Pi, and seeks a justification for φ. The speaker Pj of the question
creates no dialectical obligations on himself by the question utterance.

F3: challenge(Pj , Pi, φ): A speaker Pj challenges a prior utterance of assert(Pi, φ) by
another participant Pi, and seeks a justification for φ. In contrast to a question, with this
locution, Pj also creates a dialectical obligation on himself to provide a justification for
not asserting φ, for example an argument against φ, if questioned or challenged. Thus,
challenge(Pj , Pi, φ) is a stronger utterance than question(Pj , Pi, φ).

F4: justify(Pi, Φ %+ φ): A speaker Pi who had uttered assert(Pi, φ), and was then ques-
tioned or challenged by another speaker, is able to provide a justification
Φ ∈ A for the initial statement φ by means of this locution. The utterance
justify(Pi, Φ %− φ) is similarly defined.

F5: retract(Pi, φ): A speaker Pi who had uttered assert(Pi, φ) or justify(Pi, Φ %+ φ)
can withdraw this statement with the utterance of retract(Pi, φ) or the utterance of
retract(Pi, Φ %+ φ), respectively. This removes the earlier dialectical obligation on Pi

to justify φ or Φ if questioned or challenged.

As part of the protocol, these locutions are subject to several combination rules [15]:

CR1:The utterance assert(Pi, φ) may be made at any time.

CR2: The utterances question(Pj , Pi, φ) and challenge(Pj , Pi, φ) may be made at any
time following an utterance of assert(Pi, φ). Similarly, the utterances

3 Note that we are not using the word in the sense of an agent’s persistent intentions.
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question(Pj , Pi, Φ) and challenge(Pj , Pi, Φ) may be made at any time following an
utterance of justify(Pi, Φ %+ φ).

CR3: Immediately following an utterance of question(Pj , Pi, φ) or challenge(Pj , Pi, φ),
the speaker Pi of assert(Pi, φ) must reply with justify(Pi, Φ %+ φ), for some Φ ∈ A.

CR4: The utterances question(Pk, Pj , φ) and challenge(Pk, Pj , φ) may be made at any
time following an utterance of challenge(Pj , φ).

CR5: Following an utterance of question(Pk, Pj , φ) or challenge(Pk, Pj , φ), the speaker
Pj of challenge(Pj , φ) must reply immediately with justify(Pj , Δ %− φ), for
Δ ∈ A.

CR6: The utterance retract(Pi, φ) may be made at any time following an utterance
of assert(Pi, φ). The utterance retract(Pi, Φ) may be made at any time following an
utterance of justify(Pi, Φ %+ φ).

We may ask why each locution is needed. assert(.) is necessary in order that some
assertion be made explicitly which can form the basis of argument. If these locutions are
added to an existingACL, then an existing illocution could be used for assert(.), provided
it is given an appropriate semantics. For instance, in FIPA ACL, inform(.) could be used,
so long as it given the semantics assigned to assert(.) in Section 4. Then, given a claim,
other participants need illocutions to request justifications for the claim from the original
speaker. Both question(.) and challenge(.) enable this. Once questioned or challenged,
an illocution is needed to enable the original speaker to present her justification for
the claim; this is made possible with justify(.). In the course of an argument, a rational
speaker may change her view on the matter under discussion, and therefore an illocution
is needed to enable the speaker to express this self-transformation [17]; the illocution
retract(.) enables this.

Another question here is why both question(.) and challenge(.) are needed. The
answer lies in the semantics of the two locutions. On the basis of the informal definitions
above (and ignoring any complications due to the timing of utterances), one could say
that the utterance:

challenge(Pj , Pi, φ)

is equivalent in effect to the sequence of two utterances:

question(Pj , Pi, φ)

assert(Pj ,¬φ).

However, this equivalence only holds if the propositions concern beliefs and the Law of
Excluded Middle (LEM) is assumed. Participant Pj may have an argument against φ,
but no argument in favor of¬φ; if LEM is not assumed, then having a negative argument
against one is not necessarily the same as having a positive argument for the other.
Similarly, if, for example, the propositions concern intended actions, then attacking a
proposed action φ is not at all the same as supporting a conflicting action included in¬φ.
Moreover, one may agree with a proposed action, and yet feel required to challenge it
because one disagrees with the reasons advanced for it, as in [9]. Accordingly, we retain
both question(.) and challenge(.).
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Another question is whether these locutions and combination rules are sufficient for
argumentation-based interactions. An obvious absence is a specific illocution to enable a
hearer Pj to endorse or support an earlier utterance of assert(Pi, φ) by a speaker Pj . For
some application domains, such as the scientific inquiries of [14], hearers may desire to
indicate partial or qualified acceptance, and so specific locutions are valuable. However,
for the generic protocol, participant Pj can indicate acceptance with an utterance of
assert(Pj , φ). Another absence are specific rules regarding termination. We have not in-
cluded these in keeping with the absence of commencement and termination rules in FIPA
ACL. For the same reason, we have not included combination rules to preclude malevo-
lent, capricious or badly-coded agents from making repeated or meaningless utterances.

4 Protocol Semantics

4.1 Axiomatic Semantics

An axiomatic semantics for a programming language defines a set of axioms which
the language obeys, such as the pre-conditions and post-conditions for each command
[25]. We give a formal, axiomatic semantics for the locutions of Fatio in terms of the
beliefs and desires of the participating agents, when the content of utterances under
the protocol refer to beliefs. This approach could equally well apply for other types of
utterance content, such as intentions, social connections, commitments, etc. We provide
such a mentalistic semantics in order to facilitate the use of these locutions alongside
those of the FIPA ACL, which locutions have been given such a semantics [7]. Our choice
of agent beliefs and desires as the basis for the semantics ensures consistency with the
axiomatic semantics SL of FIPA ACL. The classes C,A are as before.

Central to the axiomatic semantics are publicly-viewable stores to record dialecti-
cal obligations of the participants. Following [11], we define a private-write, public-
read store for each participant Pi in the dialogue, called a dialectical obligations store,
DOS(Pi), and containing the dialectical obligations currently incurred by Pi. All par-
ticipants can view this store, but only Pi may write to it (by means of the appropriate
utterances). We denote the contents of DOS(Pi) by triples, (Pi, X, Y ), where Pi is
a participant, where X ∈ C is a well-formed formula in the content language (here
a proposition about the world), or X ∈ A is a well-formed formula in the argument
language, and Y ∈ {+,−}. The triple (Pi, φ,+) ∈ DOS(Pi) denotes that participant
Pi has a dialectical obligation to provide justification or argument in support for the
proposition φ, while the triple (Pi, φ,−) ∈ DOS(Pi) denotes that participant Pi has a
dialectical obligation to provide justification or argument against the proposition φ.

Our semantics is specified in terms of two classes of modal operators, {Bi, Di},
where i is an agent identifier. Other symbols have the same definitions as in Section 4.1.
These classes have the following intended interpretations:4

Biφ : “Agent i believes that φ is true.”
Diφ : “Agent i desires that φ be true.”

4 Beliefs and desires are time-dependent. Because we are ignoring time in the locution syntax, we
also ignore it here. Note that the semantics SL of the FIPA ACL also ignores time [7].
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We also use simplified elements of FIPA’s action language [7–Annex A]; in particular,
we let

Done [illocution(Pi, φ), pre-con]

indicate that illocution(Pi, φ) has been uttered by participant Pi with content φ, and with
pre-conditions pre-con true just before the utterance. These operators may be embedded
to any depth. Accordingly, we can now define the locutions of Fatio in terms of these
modal operators and the done operator, presenting pre- and post-conditions for each
instantiated locution.

– assert(Pi, φ)
Pre-conditions: A speaker Pi desires that each participant Pj(j �= i), believes that
Pi believes the proposition φ ∈ C.
((Pi, φ,+) �∈ DOS(Pi)) ∧ (∀j �= i)(DiBjBiφ).

Post-conditions: Each participant Pk(k �= i), believes that participant Pi desires
that each participant Pj(j �= i), believe that Pi believes φ.
(Pi, φ,+) ∈ DOS(Pi) ∧ (∀k �= i)(∀j �= i)(BkDiBjBiφ).

Dialectical Obligations: (Pi, φ,+) is added to DOS(Pi), the Dialectical Obliga-
tions Store of speaker Pi.

– question(Pj , Pi, φ)
Pre-conditions: Some participant Pi(i �= j) has a dialectical obligation to support
φ and participant Pj desires that each other participant Pk(k �= j), believe that Pj

desires that Pi utter a justify(Pi, φ, .) locution.
∃i(i �= j)(((Pi, φ,+) ∈ DOS(Pi)) ∧ (∀k �= j)DjBkDj(∃Δ ∈ A)
Done [justify(Pi, Δ %+ φ), ((Pi, φ,+) ∈ DOS(Pi))])).

Post-conditions: Participant Pi must utter a justify locution.
(∃Δ ∈ A) Done (justify(Pi, Δ %+ φ), Done [question(Pj , Pi, φ), ((Pi, φ,+) ∈
DOS(Pi))]).

Dialectical Obligations: No effect.

– justify(Pi, Φ %+ φ)
Pre-conditions: A speaker Pi has a dialectical obligation to support φ ∈ C, another
speaker Pj(j �= i) has uttered a question(Pj , Pi, φ) or a challenge(Pj , Pi, φ) locu-
tion, and Pi desires that each participant Pk(k �= i) believes that Pi believes that
Φ ∈ A is an argument for φ.
((Pi, φ,+) ∈ DOS(Pi))∧(Done [question(Pj , Pi, φ), ((Pi, φ,+) ∈ DOS(Pi))]∨
Done [challenge(Pj , Pi, φ), ((Pi, φ,+) ∈ DOS(Pi))]) ∧
(∃Φ ∈ A)(∀k �= i)(DiBkBi(Φ %+ φ)).

Post-conditions: Each participant Pk(k �= i) believes that Pi desires that each
participant Pj(j �= i) believes that Pi believes that Φ ∈ A is an argument for φ.
((Pi, φ,+) ∈ DOS(Pi)) ∧ ((Pi, Φ,+) ∈ DOS(Pi)) ∧
(∀k �= i)(∀j �= i)(BkDiBjBi(Φ %+ φ)).
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Dialectical Obligations: (Pi, Φ,+) is added to DOS(Pi), the Dialectical Obliga-
tions Store of speaker Pi.

– challenge(Pj , Pi, φ)
Pre-conditions: Some participant Pi(i �= j) has a dialectical obligation to support
φ and participant Pj desires that each other participant Pk(k �= j), believe both that
Pj desires that Pi utter a justify(Pi, Δ %+ φ) locution for some Δ ∈ A and that Pj

does not believe φ.
∃i(i �= j)(((Pi, φ,+) ∈ DOS(Pi)) ∧ (∀k �= j)(DjBk¬Bjφ)
∧(∀k �= j)DjBkDj(∃Δ ∈ A)
Done [justify(Pi, Δ %+ φ), ((Pi, φ,+) ∈ DOS(Pi))])).

Post-conditions: Participant Pi must utter a justify locution and speaker Pj becomes
dialectically obligated to provide an argument against φ if questioned or challenged.
((Pj , φ,−) ∈ DOS(Pj) ∧ (∃Δ ∈ A) Done [justify(Pi, Δ %+ φ),
Done [question(Pj , Pi, φ), ((Pi, φ,+) ∈ DOS(Pi))]].

Dialectical Obligations: (Pj , φ,−) is added to DOS(Pj), the Dialectical Obliga-
tions Store of speaker Pj .

– retract(Pi, φ)
Pre-conditions: For proposition φ ∈ C, with (Pi, φ,+) ∈ DOS(Pi), Pi desires that
each participant Pj(j �= i) believes that Pi no longer believes φ. For proposition
φ ∈ C, with (Pi, φ,−) ∈ DOS(Pi), Pi desires that each participant Pj(j �= i)
believes that Pi no longer does not believe φ.
((Pi, φ,+) ∈ DOS(Pi) ∧ (∀j �= i)(DiBj¬Biφ))
∨
(((Pi, φ,−) ∈ DOS(Pi)) ∧ (∀j �= i)(DiBj¬¬Biφ)).

Post-conditions: Depending on the two cases in the pre-conditions, either each
participant Pk(k �= i), believes that participant Pi desires that each participant
Pj(j �= i), believe that Pi no longer believes φ, or each participant Pk(k �= i),
believes that participant Pi desires that each participant Pj(j �= i), believe that Pi

no longer does not believe φ.
((Pi, φ,+) �∈ DOS(Pi) ∧ (∀k �= i)(∀j �= i)(BkDiBj¬Biφ))
∨
((Pi, φ,−) �∈ DOS(Pi) ∧ (∀k �= i)(∀j �= i)(BkDiBj¬¬Biφ)).

Dialectical Obligations: Either (Pi, φ,+) or (Pi, φ,−) is removed from DOS(Pi),
the Dialectical Obligations Store of speaker Pi.

The illocutions justify(Pi, Φ %− φ) and retract(Pi, Φ) have similar semantics to that for
justify(Pi, Φ %+ φ) and retract(Pi, φ), respectively. Because C is a proper subset of A,
this semantics permits a speaker to use proposition φ as a justification for itself. Whether
or not this is acceptable to the other participants in a dialogue depends on their attitudes
at the time [18].
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4.2 Operational Semantics

We also present an operational semantics for the Fatio protocol.An operational semantics
indicates how the states of a system change as a result of execution of the commands in
a programming language [25]. In this case, the commands in question are the locutions
in an argumentation dialogue conducted according the rules of the protocol.5

Our definition of the protocol in Section 3 was deliberately exclusively syntactical: we
made no assumptions regarding the decision-making architectures or the mental states of
the participants before, during or after the dialogue in which they engage. Consequently,
any agent willing to submit to the defined rules of the argumentation dialogue may
participate in it, regardless of the meaning(s) the agent may place on the utterances made.
We believe this property ensures wide applicability. However, the rules for Fatio are not
sufficient to ensure the automatic generation of agent dialogues. To achieve this, the
individual participants need to be vested with mechanisms which will invoke particular
utterances at particular points in the dialogue, responding to past and anticipated future
utterances. We call these mechanisms agent decision mechanisms, although they still
may be simulated by the participants, and thus bear little or no relationship to the true
decision-making processes or associated “mental states” of the participants.

Agent Decision Mechanisms. We present a portfolio of internal agent decision mecha-
nisms. Although defined here at a high level, each mechanism is readily implementable
using argumentation reasoning methods (D1–D4) or meta reasoning methods (D5).

D1(φ): Claim or Not: A procedure, for each statement φ, to enable an agent Pi to
decide to utter an assert(Pi, φ) locution. If the agent is vested with a reasoning process
using argumentation, as in [1, 18], then this procedure may operate by assessing the
arguments for and against φ, and then deciding to speak or not on the basis of the agent’s
argument assertion attitudes [18]. The two outputs of this mechanism are: listen and
utter-assert(φ).

D2: React or Not: A procedure to enable an agent Pj to decide to utter a
question(Pj , Pi, φ) or a challenge(Pj , Pi, φ) locution, following an assert(Pi, φ) ut-
terance. As with mechanism D1, an agent using argumentation-based reasoning may
decide to speak on the basis of the agent’s argument acceptance attitudes [18]. The three
outputs of this mechanism are: listen, utter-question(Pi, φ) and utter-challenge(Pi, φ).

D3(φ): Defend or Not: A procedure to enable an agent Pi with a dialectical obligation
to provide justification for some statement or argument to utter a justify(.) locution to
meet this obligation. This procedure could include, as a sub-procedure, the identification
of the best justification for the statement at this time in the dialogue. The two outputs of
this mechanism are: listen and utter-justify(.).

D4(φ): Fold or Not: A procedure to enable an agent Pi with a dialectical obligation to
provide justification for some statement or argument to utter a retract(.) locution. The
two outputs of this mechanism are: listen and utter-retract(.).

5 Other agent communications protocols for which operational semantics have been defined in-
clude the negotiation dialogue protocol of [13].
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D5: Listen or Do: A procedure to await a new utterance from other participants, and,
upon its receipt, to decide which of the four classes of mechanisms D1–D4 to execute.
The five outcomes are: listen and do-mech(Di), for i = 1, 2, 3, 4.

Note that mechanism D5 is a meta-level decision mechanism, and may include proce-
dures for intention-reconsideration, as in [21].

Transition System. We now present the transition rules of the operational semantics
for Fatio. We assume the participating agents are imbued with the decision mechanisms
above, enabling them to initiate utterances and to respond to utterances in the dialogue,
and so the states we will take to be the inputs and outputs of these decision mechanisms.
The locutions uttered in the dialogue effect transitions between states of the decision
mechanisms, as utterances serve as inputs to one or more of the mechanisms of the
participating agents, and then these mechanisms in turn produce outputs causing further
utterances in the dialogue. Thus, our operational semantics provides a formal linkage
between the dialogue utterances and agent decision mechanisms.

To define these links, we let the triple 〈Pi,K, s〉 denote the mechanism with number
K and with an output s of participant Pi. For ease of presentation, where a transition is
invoked by or invokes a particular output of a mechanism K this is denoted by the specific
output s in the third place of the triple; where no specific output is invoked, we denote this
by a period in the third place, 〈Pi, K, .〉. Some transitions occur between mechanisms of
different agents by means of dialogue locutions; these are denoted by arrows, labelled by
the relevant locution number (F1–F5) from Section 3. Other transitions occur between
the mechanisms of a single agent; these are denoted by unlabelled arrows.Where different
agent subscripts appear in the same transition rule, they refer to distinct agents. The rules
are defined as follows, for any statement φ, and for any agents Pi, Pj and Pk:

TR1: 〈Pi, D1(φ), listen〉 → 〈Pi, D5, . 〉
TR2: 〈Pi, D1, utter-assert(φ)〉 F1→ 〈Pi, D5, listen 〉
TR3: 〈Pi, D1, utter-assert(φ)〉 F1→ 〈Pj , D5, do-mech(D2) 〉
TR4: 〈Pj , D2, listen〉 → 〈Pj , D5, . 〉
TR5: 〈Pj , D2, utter-question(Pi, φ)〉 F2→ 〈Pj , D5, listen 〉
TR6: 〈Pj , D2, utter-question(Pi, φ)〉 F2→ 〈Pi, D5, do-mech(D3(φ)) 〉
TR7: 〈Pj , D2, utter-question(Pi, φ)〉 F2→ 〈Pk, D5, listen 〉
TR8: 〈Pj , D2, utter-challenge(Pi, φ)〉 F3→ 〈Pj , D5, listen 〉
TR9: 〈Pj , D2, utter-challenge(Pi, φ)〉 F3→ 〈Pi, D5, do-mech(D3(φ)) 〉
TR10: 〈Pj , D2, utter-challenge(Pi, φ)〉 F3→ 〈Pk, D5, listen 〉
TR11: 〈Pi, D3(φ), listen〉 → 〈Pi, D5, . 〉
TR12: 〈Pi, D3(φ), utter-justify(φ)〉 F4→ 〈Pi, D5, listen 〉
TR13: 〈Pi, D3(φ), utter-justify(φ)〉 F4→ 〈Pk, D5, . 〉
TR14: 〈Pi, D4(φ), listen〉 → 〈Pi, D5, . 〉
TR15: 〈Pi, D4(φ), utter-retract(φ)〉 F5→ 〈Pi, D5, listen 〉
TR16: 〈Pi, D4(φ), utter-retract(φ)〉 F5→ 〈Pk, D5, . 〉
TR17: 〈Pi, D5, listen 〉 → 〈Pi, D5, . 〉
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TR18: 〈Pi, D5, do-mech(D1(φ)) 〉 → 〈Pi, D1(φ), . 〉
TR19: 〈Pi, D5, do-mech(D2) 〉 → 〈Pi, D2, . 〉
TR20: 〈Pi, D5, do-mech(D3(φ)) 〉 → 〈Pi, D3(φ), . 〉
TR21: 〈Pi, D5, do-mech(D4(φ)) 〉 → 〈Pi, D4(φ), . 〉
To illustrate the meaning of these rules, consider rule TR6, which indicates that when
agent Pj utters locution F2 — question(Pj , Pi, φ) — to agent Pi, then Pi initiates
mechanism D5 with output mechanism D3(φ): Defend or Not. Transition Rules TR11–
TR13 show the possible transitions on from agent Pi’s execution of mechanism D3.

5 Example

We give a brief example of a dialogue conducted under the Fatio protocol, between
participants labelled A, B and C. The argument uses four propositions relating to a
fictional restaurant, the Brigade Brigade:

R: The Brigade Restaurant is excellent.
P: I had a great meal at the Brigade.
Q: I am vegetarian.
S: Vegetarian food at the Brigade is awful.

The dialogue proceeds as follows, with utterances numbered in bold, and annotation
following each utterance:

1: assert(A, R)
Agent A asserts that the Brigade Restaurant is excellent.

2: challenge(B, A, R)
Agent B challenges agent A’s assertion, and creates a dialectical obligation to defend a
contrary claim.

3: justify(A, P %+ R)
Agent A justifies his assertion by stating he had a great meal at the Brigade.

4: question(C, B, R)
Agent C asks B to provide an argument for his claim, implicit in utterance 2, that it is
not the case that the Brigade Restaurant is excellent.

5: justify(B, Q & S %− R)
Agent B respond’s to C’s question, by claiming that the vegetarian food at the Brigade
is awful.

6: retract(A, R)
Agent A retracts his claim that the Brigade Restaurant is excellent.

7: question(C, B, Q)
Agent C questions B’s claim that that the vegetarian food at the Brigade is awful.

...
etc.
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Although only a simple example, this illustrates the use of the Fatio protocol for argu-
ment-based interaction. Because FIPA ACL has no illocutions for argumentation, such
a dialogue is not possible using only the 22 illocutions of that language defined as in the
FIPA modal semantics.

6 Conclusions

The primary contribution of this paper has been to define a new protocol for argument-
based dialogue between autonomous, intelligent agents. The protocol, Fatio, allows
participants to make assertions, request justifications for assertions, make challenges to
assertions, provide justifications (or arguments) for assertions, and retract prior asser-
tions. The content of dialogues conducted under the protocol may range over any domain:
objectively-verifiable beliefs about the world beyond the dialogue; internal mental states
of the participants, such as their preferences and intentions; statements about the social
relationships between the participants; commitments of the participants to actions in
the world beyond the dialogue; even dialectical obligations of the participants to one
another.

In this paper, we also presented a novel classification of illocutions in agent interac-
tions, drawing on speech act theory and the philosophy of communicative action. The
definition of the Fatio protocol presented illocutions in the class of Argumentation State-
ments, namely utterances questioning, challenging and defending the contents of other
speech acts. As our work shows, this is a class of statements ignored by the FIPA ACL
agent communications language. We also presented both an axiomatic semantics and an
operational semantics for the Fatio protocol. The axiomatic semantics was defined for
the case where the content of utterances concerns the beliefs of the participants and in
terms of modal operators representing the beliefs and desires of the participants. The
basis of this semantics is similar to the semantic language defined for the FIPA ACL.
Thus, the five Fatio locutions could readily be added to the 22 standard FIPA ACL locu-
tions should an agent system designer so wish. Such addition would help to overcome
the impoverished argumentation theory of FIPA ACL. The Fatio protocol could also be
used on a stand-alone basis, or as an addition to other agent interaction protocols.

It is well-known that the axiomatic semantics of the FIPA ACL is not verifiable
in general [28]. To seek to ameliorate this, in other work we have defined the notion
of a contestability semantics [16], in which claims made by agents in a dialogue are
contestable by other participants, who can question or challenge the claims, and seek
justifications for them. In this manner, agent claims may be assessed, for example, for
correspondence to the truth; for consistency; for sincerity; and so on. Such assessments
take place at run-time, in the dialogue itself, by the other participants as and when
required, rather than being undertaken by the design teams in some conformance testing
process before any dialogue commences. The Fatio Protocol provides the means to
undertake such run-time assessments, and therefore is an operationalization of our notion
of contestability semantics.

In this paper, we articulated the syntax, an axiomatic semantics and an operational
semantics for the locutions of the Fatio Protocol. It should also be possible to define a
denotational semantics for the protocol, linking utterances made under the protocol to
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the nodes and edges of a graph representing the arguments created by the participants in
course of a dialogue together. Such a graph would be similar in spirit to the argumentation
graph constructed by the participants in Thomas Gordon’s Pleadings Game [8]. We hope
to explore these ideas in future work.
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Abstract. Agent communication languages defined using joint intention theory 
have enjoyed a long research history. A number of performatives have been 
defined and refined in this literature with particular emphasis on the basic 
performatives of REQUEST and INFORM, which subsequently have many 
subtle versions. Even these less common performatives have been extended and 
refined multiple times. In many cases the underlying definitions upon which the 
various performatives are based have been modified as well. While working 
toward implementing a multi-agent system with communications based upon 
joint intention semantics, it quickly became apparent that it was going to be 
difficult to identify a single set of performatives with correct and compatible 
definitions. We also realized that a set of performatives with enough breadth to 
cover the needs of real fielded multi-agent systems has not yet been defined. 
We intend this paper to provide in a single place a broadly applicable set of 
compatible performatives defined using joint intention semantics. Many of the 
performatives previously defined in the literature have been brought to the same 
semantic basis while we have also defined a number of new performatives to 
increase the breadth of performatives available to agent developers. 

1   Introduction 

This paper defines a broad range of Agent Communication Language (ACL) 
performatives based upon the semantics of joint intention (JI) theory 
[2,4,5,6,7,10,11,13,14,15,20,25]. A great deal of prior research on specifying “speech 
acts” [27] for agent communication languages based on joint intention theory has 
already been performed [2,4,5,6,7,12,16,17,20,28,29]. 

Researchers fielding multi-agent systems using joint intention theory and 
performatives based upon it [13,14,15,24,31,33] run into several issues however, due 
primarily because joint intention theory has such a rich research history: 

• Performative definitions are spread throughout the literature, with no single 
paper to refer to. 

• Base-level semantic definitions related to joint intentions have changed 
slowly over time in the research, both in its semantics and in its notation (as 
limitations are eliminated or extensions made). 
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• Performative definitions have changed to match changes in these basic 
definitions, but not all performatives previously defined are updated with 
each underlying definition change. 

• Performative definitions have been modified over time even when the 
underlying semantic definitions have remained constant (again, ostensibly to 
remove limitations, make extensions, etc.) 

• The complexity of the definitions may sometimes cause confusion when 
selecting the correct performative in multi-message exchanges. 

• Not all of the performatives that might be considered necessary for fielding a 
multi-agent system have been defined, notably “utility” performatives, both 
those implicitly required by joint intention theory and those not so required 
but found to be useful when fielding systems based on ACLs with other 
semantics [8,19,34]. 

To address these issues, we extensively reviewed the semantic definitions of 
performatives based on Joint Intention theory, particularly those based on the work 
of Cohen and Levesque, and defined a broad range of performatives with a single, 
consistent, unified semantic basis with more explicit historical context. This has the 
benefit of 1) a single semantic basis for all of the performatives, 2) a single place to 
refer to performative definitions, 3) a much broader selection of performatives than 
has been specified to date, and 4) more direct and clearer applicability to a much 
broader set of singe and multi-message interactions than the performatives defined 
to date. 

The performative defined in the paper fall into the following general categories: 

• Core: INFORM, REQUEST, SHOUT 
• Specialized Core: SUBSCRIBE, QUERY, PROXY, PROXY-WEAK, 

STANDINGOFFER 
• Team-oriented: AGREE, REFUSE, CANCEL, FAILURE, ACCEPT, 

REJECT, WITHDRAW, ORDER 
• Utility: IMPOSSIBLE, RELFAIL, SUCCESS, ACKNOWLEDGE, 

NOTUNDERSTOOD 

Core performatives are the most basic performatives, defined directly using the 
basic definition of ATTEMPT. The Core performatives are those that all of the other 
performatives are based, either using specialization or composition. The Specialized 
Core performatives are Core performatives that have particular message content 
expressions. Team-oriented performatives exploit the semantics of Joint Intention 
theory to form and dissolve teams of agents under various circumstances. Utility 
performatives are also specializations of Core performatives, but are in general used 
in service of the semantic ramifications of the other performatives. This 
categorization of the performatives is arbitrary to some extent and we could have 
categorized them differently. For example, the performatives in the Utility category 
could be considered Specialized or Team-oriented. Nevertheless, we have found it 
useful to group them as shown above. 
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2   Agent Communication Language Components 

2.1   Basic Semantic Notation and Definitions 

A summary of the basic notation and definitions follows. Full details of this modal 
language, including formal models, are beyond the scope of this paper, but can be 
found in [3] and [4]. 

e, e′, etc. are events 
a, a′, etc. are actions (complex event expressions) 
p, q, etc. are propositions (where q, q′, etc. are  used as relativizing conditions) 
t, t′, t1, t2, etc. are time points  
x, y, z are agents 

 = always 
 = eventually 

e < e′ says that e occurs before e′ 
(BEL x p) say that p follows from x’s beliefs. 
(GOAL x p) say that p follows from x’s choices. 
(HAPPENS a), (HAPPENED a), and (DONE a) say that a sequence of actions 
described by the action expression a will happen next, happened sometime in the past, 
or has just happened, respectively. (HAPPENS x a) and (DONE x a) also specify the 
agent for the action sequence that is going to happen or has just happened. 
(UNTIL p q) says that q holds up to the time that p becomes true. 
BEFORE and AFTER are defined using HAPPENS and DONE. 
(EARLIER p) ≡ ¬p  ∃e (HAPPENED p?;e) 

An action expression is built from variables ranging over sequences of events using 
constructs of dynamic logic: a;b is action composition, p? is a test action, | specifies 
non-deterministic choice, and || indicates concurrent actions. Mutual belief is defined 
in terms of unilateral mutual belief (BMB) [16]. 

In some of the definitions to follow, we need to specify how rewriting occurs for 
embedded speech. We use a parameter substitution function substperf such that 
substperf(param/val) replaces all occurrences of the schematic variable param 
representing a specified parameter of performative perf by the given value val. For the 
speech acts defined within this paper, we use the following abbreviations for speech 
act parameters: speech act (sa), sender (s), intended-recipient (i), distribution (final) 
recipient (d), event (e), action (a), proposition (p), constraint condition (c), 
relativizing condition (q), and time (t). All unreferenced speech act parameters are left 
unchanged. 

For example, if sact = (INFORM x y e on-vacation(x) t), a fully specified speech 
act, we can specify a new speech act sact' using our substitution function 

sact' = substsact(s/y i/z e/e' t/t') 

which represents an INFORM speech act with all occurrences of the sender parameter 
replaced by y, all occurrences of the intended recipient parameter replaced by z, etc. 
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Definition: HAPPENING 

(HAPPENING a) ≡ (DONE a) ∨ (HAPPENS a) ∨ 
            [∃e.(e ≤ a )  (DONE e)  ¬(DONE a)] 

An action expression a is happening if one of the following is true (1) a has just been done, 
or (2) a is going to happen next (i.e. a is just starting), or (3) there exists some initial 
subsequence of a (represented by e) that has just been done but a is not yet done [13]. 

Definition: PGOAL (Persistent Goal) 

(PGOAL x p q) ≡ (BEL x ¬p)  (GOAL x p)  
                          (UNTIL [ (BEL x p) ∨ 

  (BEL x ¬p) ∨ 
  (BEL x ¬q) ] 

               GOAL x p) 

A persistent relativized goal formalizes the notion of commitment. An agent x 
having a persistent goal p is committed to that goal. The agent x cannot give up the 
goal that p is true in the future, at least until it believes that one of the following is true: 
p is accomplished, is impossible, or the relativizing condition q is untrue [3]. Note that 
we assume that agents are competent with respect to their commitments [18]. 

Definition: INTEND (An Action) 

(INTEND x a q) ≡ (PGOAL x 
[HAPPENS x 

(BEL x (HAPPENS a))?;a] q) 

Intention to do an action a is a commitment to do the action knowingly. The agent 
x is committed to being in a mental state in which it has done the action a and, just 
prior to which, it believed that it was about to do the intended action next [3]. 

Definition: ATTEMPT 

(ATTEMPT x e   t) ≡ 
  t?;[(BEL x ¬ )  
       (GOAL x (HAPPENS e;• ?))  
       (INTEND x t?;e; ?(GOAL x (HAPPENS e;• ?)))]?;e  

An attempt to achieve  via  is a complex action expression in which the agent x 
is the actor of event e at time t and, just prior to e, the actor chooses that  should 
eventually become true and intends that e should produce  relative to that choice. So 
 represents some ultimate goal that may or may not be achieved by the attempt, while 
 represents what it takes to make an honest effort [4]. 

Definition: PWAG (Persistent Weak Achievement Goal) 

(PWAG x y p q) ≡  
 [¬(BEL x p)  (PGOAL x p q) ] ∨ 
 [(BEL x p)  (PGOAL x (MB x y p) q) ] ∨ 
 [(BEL x ¬p)  (PGOAL x (MB x y ¬p) q) ] ∨ 
 [(BEL x ¬q)  (PGOAL x (MB x y ¬q) ) ] 
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This definition, recently revised in [17], states that an agent x has a PWAG with 
respect to another agent y when the following holds: (1) if agent x believes that p is 
not currently true, it will have a persistent goal to achieve p, (2) if it believes p to be 
either true, or to be impossible, or if it believes the relativizing condition q to be false, 
then it will adopt a persistent goal to bring about the corresponding mutual belief with 
agent y. A PWAG expression is often used in the performatives below that are 
intended to create a joint, or social, commitment. 

2.2   ACL Performative Semantics and Descriptions 

Definition: Inform 

(INFORM x y e p t) ≡ (ATTEMPT x e   t) 
  where 
     = (BMB y x p) 
  and 
     = (BMB y x  
        (BEFORE e  
      [GOAL x 
       (AFTER e  
        (BEL y  
         [BEFORE e  
          (BEL x p) 
                            ]  )  ) 
                  ]  )  ) 

In this performative, the sender x has the goal that the intended recipient y come to 
believe that there is mutual belief that y believes p. The intention of INFORM is that 
the y comes to believe there is a mutual belief between the y and x that before sending 
the INFORM, x had a goal that after sending the INFORM the intended recipient y 
would believe that, before sending the INFORM, x believed proposition p (most 
recently from [17]). 

The INFORM performative is a general-purpose speech act suitable for any 
communication related to propositional belief. Many of the following speech acts 
specialize this speech act or us it in more complex action expressions. 

Definition: Request 

(REQUEST x y e a q t) ≡ (ATTEMPT x e   t) 
  where 
     = (DONE y a)  [PWAG y x (DONE y a) 
                                                      (PWAG x y (DONE y a) q) q] 
  and 
     = (BMB y x (BEFORE e  
                  [GOAL x 
                      (AFTER e  
                                         (BEL y [PWAG x y  q]  )  )  ]  )  ) 

We use the single-agent version of the definition of the REQUEST performative 
that is defined in [16] and later refined in [17]. Intuitively, this definition says that in 
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making a request of addressee y, the requestor x is trying to get y to do the action a, 
and to form the commitment to do a relative to the context q and the requester’s 
commitment that it do it. 

The goal of the requester is that the intended actor y eventually do the action a and 
have a PWAG with respect to the requester x to do a. The intended actor’s PWAG is 
with respect to (i.e., relativized to) the requester’s PWAG (towards y) that y does the 
action a and also with respect to q. The requester’s PWAG is itself relative to some 
higher-level goal q. 

The intention of REQUEST is that the recipient y believe there is a mutual belief 
between the recipient and the requester that before performing the REQUEST, the 
requester x had a goal that after performing it, the requester x will have a PWAG with 
respect to the intended actor y about the goal  of the request. 

The REQUEST performative is a general-purpose speech act useful whenever one 
agent wants another agent to do something. Many of the following speech acts 
specialize this speech act or us it in more complex action expressions.  

Definition: Subscribe 

(SUBSCRIBE x y e ∏ q t) ≡ (REQUEST x y e α q t) 
where, 
   α = (∀t1,t2,t3.( t < t1< t2 < t3).∀e′,∀τ. 
          (DONE (t1?;¬∏(τ)?;t2?;∏(τ)?;(INFORM y x e′ ∏(τ) t3) | 
                      t1?; ∏(τ)?;t2?;¬∏(τ)?;(INFORM y x e′ ¬∏(τ) t3))))? 

  where τ represents a grounded object and 
  ∏ is a unary predicate, indicating the information of interest to the sender, that 

evaluates to true or false for objects (τ): 

A new JI performative, a SUBSCRIBE is a REQUEST for the sender to INFORM 
the recipient whenever the indicated predicate changes state for any objects known to 
y that satisfy ∏. Unless initially REFUSEd or subsequently CANCELed (see below), 
the recipient y should INFORM ∏(τ) or ¬∏(τ) whenever the truth value of the 
predicate changes from false to true  or true to false, respectively. 

The SUBSCRIBE performative is useful in situations where an agent needs to be 
kept up to date on another agent’s beliefs over an extended period of time. For 
example, ∏=OnTable, y might come to inform x that OnTable(blockA), another 
message to inform x that ¬OnTable(blockB), etc. In the CIANC project, in which 
autonomous vehicles might be used for surveillance [33], ∏ can be the predicate 
HostileWithinRange(), such that an agent subscribing to a surveillance agent using that 
predicate will be kept advised on hostile units that come into and leave weapons range. 

Definition: Query 

(QUERY x y e p q t) ≡ (REQUEST x y e α q t) 
  where 
    α = (∃e',t', t'>t, e'>e.(DONE (INFORM y x e′ p t') | 
                                                    (INFORM y x e′ ¬p t') ) )? 

In this performative, the sender asks the recipient about their belief in the truth 
value of a particular proposition (similar to the “yes-no question” performative in [7]). 
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In other words, y is requested to INFORM x, at some future time with a distinct event, 
of its belief in the value of p. The QUERY performative is useful in situations when 
only the current belief value of a single proposition is required by the querying agent. 

Definition: Proxy 

(PROXY x y z e c sact q t) ≡ 
    (REQUEST x y e 
                        (c?; [∃e',t'.(DONE substsact(s/y i/z e/e' t/t') ) ]? ) q t) 

PROXY is defined as a request by the sender x for an intermediary agent y to perform 
a specified speech act, sact, to a final target agent z if the condition c is met (modified 
from the [12], which gives details of this speech acts’ 3rd party semantics). sact can be any 
fully-specified speech act, but the sender of sact (performed as a distinct event at a future 
time) will be y and the final recipient will be z. With the PROXY performative, the 
“middle agent” y assumes all responsibility associated with uttering the proxied 
performative sact to z. The PROXY performative provides agents the important capability 
of using intermediary agents [8,9,19,21,30,34] to do speech acts on its behalf. 

Definition: Proxy-Weak 

(PROXY-WEAK x y z e c sact q t) ≡ 
    (REQUEST x y e 
                        (c?; [∃e',t'.(DONE (INFORM y z e' θ t') ) ]? ) q t) 
  where 
    θ = (HAPPENING subtsact(s/y i/z e/e;e' t/t') ) 

This performative is a weaker version than PROXY, where the middle agent y 
sends an INFORM message about sact rather than perform sact itself. This protects the 
middle agent from bearing the obligations associated with performing sact directly and 
at the same time results in a state as if x had performed sact directly to z (modified 
from [10], which gives details of this speech acts’ 3rd party semantics). The PROXY-
WEAK performative provides agents the important capability of using intermediary 
agents [8,9,19,21,30,34] to pass on requests or information to third agents. 

Definition: Shout 
Given that ∏ is a unary group membership predicate indicating who the intended 
recipients are,  

(SHOUT x  e p t) ≡ (ATTEMPT x e   t) 
  where 
     = ∀y. (y) [BMB y x p] 
  and 
     = ∀y. (y). [BMB y x  
         (BEFORE e  
          [GOAL x 
           (AFTER e  
            [BEL y  
             (BEFORE e  
              [BEL x p] 
                                    ) ]  )  ]  )  ] 
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The sending agent x holds that some proposition is true and intends that the 
receiving agents, specified as those satisfying the predicate ,, also come to believe 
that the proposition is true. This is an extended form of INFORM to support making 
an utterance to multiple, incompletely-specified recipients, a capability not supported 
by the ACLs of KQML, Singh, FIPA, and others [8,19,27,34]. In this SHOUT 
performative, the sending agent is essentially performing an INFORM to each of the 
agents satisfying . . Examples of  in  in real applications might be of the form 
contractors() (to represent all agents the sending agent has contracts with), inferiors() 
(to represent all agents that the agent considers as inferiors), platoon-members() (to 
represent all agents that are associated with supporting a platoon), etc. 

A group-theoretic version of this performative based on [16] would provide more 
flexible semantics (in that the speaker would not have to know anything about the 
recipients beliefs, unlike in this definition in which it eventually does) but creating a 
complete suite of performatives with the group-theoretic work remains for future 
work. 

Definition: StandingOffer 

(STANDINGOFFER x y e a q t) ≡ (INFORM x y e θ t) 
where 
    θ = ∀e′.(DONE 
                     (INFORM y x e′ (PWAG y x (DONE x a) q))) ⊃ 
                 (DONE e′;(PWAG x y (DONE x a) 
                                                      (PWAG y x (DONE x a) q) q)?) 

In this performative (most recently from [17]), the sender x is making a standing 
offer to the recipient y to form a commitment (PWAG) to do something for the 
recipient in the future. This obligation on x’s part will only arise, however, when y 
sends it an INFORM message saying that it has a commitment and wants x to adopt 
the commitment relative to y’s. As shown in [18], the STANDINGOFFER followed 
by the definition’s INFORM results in a Joint Intention team just as if y had sent a 
REQUEST and x had replied with an AGREE. 

Definition: Order 

Within the confines of this paper, we define the following relationship definitions for 
use in the ORDER performative: 

OBEDIENT-TO 
(OBEDIENT-TO x y a q) ≡ 
    ∀e,t.[(DONE y (REQUEST y x e a q t) ) ⊃ 
             (PWAG y x (DONE x a) q)  
             (PWAG x y (DONE x a) 
                                 [PWAG y x (DONE x a) q] q ) ] 

Agent x is obedient to y with respect to action a and relativizing condition q when 
for every REQUEST by y, x will always adopt a PWAG to do a with respect to y’s 
PWAG that x do a. A synonym to OBEDIENT-TO is INFERIOR (i.e., if y is 
OBEDIENT-TO x, then y is INFERIOR to x). 
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AUTHORITY-OVER 
(AUTHORITY-OVER x y a q) ≡ (OBEDIENT-TO y x a q) 
Agent x has authority over agent y with respect to a and q. A synonym to 
AUTHORITY-OVER is SUPERIOR (i.e., if x has AUTHORITY-OVER y, then x is 
SUPERIOR to y). 

Then, the definition of ORDER is: 

(ORDER x y e a q t) ≡ (SUPERIOR x y a q)?;(REQUEST x y e a q t) 

In this new performative, we extended the single-agent version of the definition of 
the REQUEST performative to support authority relationships, wherein the sender has 
some recognized authority to unilaterally task the recipient. Here, x is the agent 
performing the ORDER, y is the intended recipient (the intended actor), e is the event 
of performing the ORDER, a is the action to be done, q is a relativizing condition, and 
t is the time point of the utterance. An ORDER with the appropriate SUPERIOR 
relationship automatically results in nested persistent goals (PWAGs) as if an explicit 
AGREE (see below) had been performed by the recipient. 

Definition: Agree 

(AGREE x y e a q t) ≡ 
    (∃e′, t′.(EARLIER (DONE (REQUEST y x e′ a q t′) ) )?; 
    (INFORM x y e (PWAG x y (DONE x a) 
                                      (PWAG y x (DONE x a) q) q)) 

This performative is an agreement to perform an action requested by another 
agent. This is similar to the CONFIRM performative of [29] and [17], but revised 
extensively to require the historical context (i.e., an earlier REQUEST). As shown in 
[17], this performative is sufficient to create a team with interlocking PWAGs when 
in response to a prior REQUEST. 

Definition: Refuse 

(REFUSE x y e a q t) ≡  
    (∃e′, t′.[EARLIER 
                    (DONE (REQUEST y x e′ a q t′) ) ] )?; 
    (INFORM x y e ¬[PWAG x y (DONE x a) 
                                          (PWAG y x (DONE x a) q) q] ) 

The sender will NOT adopt the recipient’s goal to do an action from a prior 
request. This is similar in some respect to that of the REFUSE performative of [29] 
and [17]. Our formulation is more specific in the context term (a REQUEST 
compared to a more general PWAG expression). In addition, their formulation uses 

¬[PWAG…], indicating that the refusing agent would never perform the action for 
the other agent. However, we feel that this is not desirable as the agent that is 
currently refusing might accept to do the action at a later time. The definition of [28] 
has the same ¬[PWAG …] semantics but does not include the historical context (i.e., 
the EARLIER term). 
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Definition: Cancel 

(CANCEL x y e a q t) ≡ 
    (∃e′,t′.[EARLIER 
                      (DONE (REQUEST x y e′ a q t′) ) ]  )?; 
    (INFORM x y e ¬(PWAG x y (DONE y a) q) ) 

In the CANCEL performative, the sender no longer has the goal that the recipient 
perform an action (accepted in response to a prior REQUEST by the sender). This has 
been revised from [17] to specify REQUEST in the context rather than a PWAG 
expression. Not that this performative can also be used to dissolve a team in certain 
circumstances, such as when a REQUEST/AGREE performative sequence was 
performed between x and y. 

Definition: Failure 

(FAILURE x y e a q t) ≡ 
   (∃e′,t′.(EARLIER [DONE (REQUEST y x e′ a q t′) ] ) )?; 
   (INFORM x y e 
              (DONE x (¬p  (INTEND x ¬p?;a;p?);a;¬p?)? ) ) 

In this new performative, the sender tells the recipient that the action a was 
attempted but was not successfully completed. The DONE expression indicates that 
the sender intended that the action would have certain expected results but that after 
performing the action the results were not what was expected. This is not sufficient to 
terminate a team of agents; if the sender is part of a team with respect to performing 
action a, it will persist in pursuing the action until the team’s PWAG is eventually 
satisfied. Even without the power to dissolve a team, this message is often useful as a 
status message between agents in fielded multi-agent systems. 

Definition: Accept 

(ACCEPT x y e a q t) ≡ 
    (∃e′,t′.(EARLIER [DONE (STANDINGOFFER y x e′ a q t′) ] ) )?; 
    (INFORM x y e (PWAG x y (DONE y a) q) )  

This performative is an acceptance of the other agent standing offer to perform 
action a (significantly modified from [17] by adding the explicit historical context 
term). Note that an additional difference between ACCEPT and AGREE is that the 
ACCEPT’s PWAG is only relative to q while the AGREE’s PWAG is relative to the 
other agent’s PWAG and q. 

Definition: Reject 

(REJECT x y e a q t) ≡ 
    (∃e′,t′.(EARLIER 
                   [DONE (STANDINGOFFER y x e′ a q t′) ] ) )?; 
    (INFORM x y e ¬(PWAG x y (DONE y a) q) ) 

This performative is the opposite of an ACCEPT, in that the sending agent tells the 
recipient that it will not be taking up the standing offer for y to perform action a. This  
 



236 M.J. Huber, S. Kumar, and D. McGee 

 

has been modified significantly from [17] by adding the explicit historical context term 
and using ¬(PWAG…) rather than ¬(PWAG …). Note that the difference between 
REFUSE and REJECT is that the REJECT’s PWAG is only relative to q while the 
REFUSE’s PWAG is relative to the other agent’s PWAG and q. 

Definition: Withdraw 

(WITHDRAW x y e a q t) ≡ 
    (∃e′,t′.(EARLIER [DONE (STANDINGOFFER x y e′ a q t′) ] ) )?; 
    (INFORM x y e ¬θ t) 

where 

    θ = ∀e′′.t′′.(DONE (INFORM y x e′′ (PWAG y x (DONE x a) q)) t′′) ⊃ 
                      (DONE e′′;(PWAG x y (DONE x a) 
                                                            (PWAG y x (DONE x a) q) q)?) 

This performative provides the means by which an agent can remove its 
STANDINGOFFER (the semantics of which is represented by θ) to do an action for 
another agent (revised from [17]). Note that the recipient of a STANDINGOFFER 
need do nothing to “remove” itself from a STANDINGOFFER relationship, as it has 
no outstanding commitment to the original sender. 

Definition: Impossible 

(IMPOSSIBLE x y e a t) ≡ 
    (∃e′,t′.(EARLIER 
                     (DONE [ (REQUEST x y e′ a q t′)  | 
                                     (REQUEST y x e′ a q t′) ] ) ) )?; 
    (INFORM x y e ¬(DONE a) t) 

In this new performative, the sender tells the recipient that it is no longer possible 
to perform action a. Per the definition of PWAG, this is sufficient to dissolve a “team” 
of agents with interlocking PWAGs and will typically be used only (but often) for this 
purpose. Note that either agent involved in the team may send this message to satisfy 
the PWAG and thereby dissolve the team. 

Definition: RelFail 

(RELFAIL x y e q t) ≡ 
    (∃e′,t′.(EARLIER 
                     (DONE [ (REQUEST x y e′ a q t′) | 
                                    (REQUEST y x e′ a q t′) ] ) ) )?; 
    (INFORM x y e ¬q t) 

In this new performative, the sender tells the recipient that the relativizing 
condition of an earlier REQUEST is no longer valid. Per the definition of PWAG, this 
is sufficient to dissolve a “team” of agents with interlocking PWAGs and will 
typically be used only (but often) for this purpose. Note that either agent involved in 
the team may send this message to satisfy the PWAG and thereby dissolve the team. 
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Definition: Success 

(SUCCESS x y e a t) ≡ (INFORM x y e (DONE x a) t) 

In this new performative, the sender tells the recipient that action a has been 
performed successfully. Per the definition of PWAG, this is sufficient to dissolve a 
“team” of agents with interlocking PWAGs (assuming such communication achieves 
a state of mutual belief). This is a very simple performative specialization, but since it 
is a very common message in fielded multi-agent systems, particularly those based 
upon joint intention theory, the resulting simplified parsing and interpretation will 
result in significant time and computational resources savings over time. 

Definition: Acknowledge 

(ACKNOWLEDGE x y e a q t) ≡ 
      (INFORM x y e 
                (∃e′,t′.[EARLIER 
                                (DONE y 
                                      (REQUEST y x e′ a q t′ ) ) ] ) t) 

An agent will use this performative to acknowledge that a prior REQUEST has 
been made. Among other uses, this can act as a courtesy message between agents. 
Note that this is a new performative definition and is completely different than the 
ACKNOWLEDGE performative in [29]. This utility performative fills a vital role in 
fielded agent systems. 

Definition: NotUnderstood 

(NOTUNDERSTOOD x y e a p t) ≡ (INFORM x y e θ t) 
  where 
    θ = ∃e′,t′.(EARLIER (DONE (sact y x e′ t′) )  
                    ¬intentof(sact y x e′ t′)  
                    ¬goalof(sact y x e′ t′) 
    sact is any fully specified speech act, 
    intentof is an operator that extracts the goal portion of sact, and 
    goalof is an operator that extracts the intention portion of sact 

In this new performative, the sender x informs y, the sender of an earlier message 
(sact), that it does not understand something about the message by expressing that it 
did receive the message but that neither the goal nor intention portion of the speaker’s 
speech act was successful. Note that this performative is not yet semantically correct 
because, strictly speaking, the intention portion of our speech acts cannot be untrue 
(by definition of speech acts, they are automatically true by their utterance) but might 
be completed using 2nd-order logic. Even though the semantics of this performative 
remains an area of future work, we found it useful as agent implementers to include 
this performative in fielded multiagent applications. 

3   Discussion 

In this paper, we have defined a broad number of performatives based upon a single, 
coherent semantics of Joint Intention theory definitions. While we have based many 
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of the performatives upon a variant found in prior literature, most of those have 
received an update to the latest semantics of this paper. Many of the other 
performatives in this paper are completely novel. 

We recognize that agents will often interact in some form of typical or common 
pattern of performative exchange (so-called conversation policies or interaction 
protocols [1,8,17,29]) and many of the performatives have been designed with this 
in mind. However, a significant amount of communications will be performed 
outside of the auspices of any explicit interaction pattern. These “standalone” 
performatives, INFORM, REQUEST, SHOUT, and ORDER, will certainly be used 
within conversation policies, but are more likely than the other performatives here 
to be used alone. 

Oftentimes an implicit protocol will be employed in practical, fielded, multiagent 
systems [15,31,33]. For example, the performatives NOTUNDERSTOOD might be 
returned after any utterance, and ACKNOWLEDGE might be returned after any 
REQUEST, irrespective of any explicit conversation policy. The REQUEST 
performative itself holds a special place in Joint Intention theory in that its utterance 
implies certain subsequent behavior (the establishment of mutual belief, in particular) 
on the part of the requesting and requested agent, much of which can be satisfied by 
messaging. We created the SUCCESS, RELFAIL, and IMPOSSIBLE performatives 
to fill the messaging needs of the agents involved in a REQUEST utterance, as each 
of these performatives can be used to establish mutual belief regarding one aspect of 
the PWAGs in the definition of REQUEST. So, while an explicit conversation policy 
may be in place upon the utterance of a REQUEST, the implicit messaging 
requirements can be satisfied by our suite of performatives. 

The SUBSCRIBE and QUERY performatives also have a simple implicit protocol 
associated with them. By definition, utterance of a SUBSCRIBE will be followed by 
one or more INFORM messages should the recipient AGREE to the SUBSCRIBE 
request. To terminate a SUBSCRIBE performative, a CANCEL performative must be 
sent by the agent that performed the SUBSCRIBE. Similarly, the QUERY 
performative will be followed by one INFORM should the recipient of the QUERY 
decide to honor the request. Interaction protocols that make the messages subsequent 
to SUBSCRIBE and QUERY are certainly not prohibited. 

The remaining performatives were defined with the expectation of using them 
primarily, if not solely, within interaction protocols. For example, we designed a 
number of other performatives to complement the REQUEST performative within an 
interaction protocol. These specifically are AGREE, REFUSE, CANCEL, SUCCESS, 
FAILURE, IMPOSSIBLE, and RELFAIL. AGREE and REFUSE can immediately 
follow a REQUEST in order to establish or prevent establishment of a Joint Intention 
team of agents, respectively. Following an AGREE message, the requesting agent can 
utter a CANCEL to dissolve the team. A FAILURE message, not strictly required by 
Joint Intention theory, can be used by the requested agent to indicate a particular state 
of progress toward performing the requested task; the FAILURE message indicates 
that the tasked agent is actively trying to do the task and is having some setbacks (but 
that the task might yet be performed, as otherwise it would have sent an  
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IMPOSSIBLE performative). A SUCCESS performative can be used to indicate that 
the action was completed successfully and will dissolve a JI team. The IMPOSSIBLE 
performative indicates from either requesting or requested agents that the task 
requested can never be accomplished and will result in dissolution of a JI team. 
RELFAIL, similarly, indicates that the context under which a REQUESTed task is 
relevant has become false and use of this performative will also result in the 
dissolution of a JI team. 

With regards to the PROXY and PROXY-WEAK performatives, their utterance 
will be followed, by definition, by another speech act, assuming that the middle agent 
decided to honor the sender’s request. Whether or not the PROXY and PROXY-
WEAK performatives are included within explicit interaction protocols is a domain 
specific decision, but they will always engender the possibility of future speech acts 
due to their utterance. 

The ACCEPT, REJECT, and WITHDRAW performatives are all designed to be 
complementary performatives to the STANDINGOFFER performative. Once an 
agent performs a STANDINGOFFER speech act, the recipient can perform and 
ACCEPT or REJECT performative to establish or prevent establishment of a JI team, 
respectively. Subsequent to an ACCEPT, the agent performing the 
STANDINGOFFER can utter a WITHDRAW to terminate the terms of the offer. 

The ORDER performative stands out from the others defined in this paper due to 
its use of agent-to-agent relationships. Inclusion of this performative within the paper 
was motivated by the CIANC project [33], in which agents related to human operators 
interact with each other while controlling and interacting with agent-based 
autonomous robotic vehicles within a military environment. We have found the need 
to make explicit the authority relationships between agents as well as the “rules of 
engagement” (authorized to do a, prohibited from doing a, obliged to x to do a, etc. 
much like deontic logic relationships [32]) that the agents are constrained by. As such, 
we have subsequently found it useful to develop performatives specialized to these 
authority and deontic relationships. The ORDER primitive is just one example of a set 
of performatives that will be developed along these lines. 

This paper presents significant progress towards our goals of a single semantic 
basis for all of the performatives, a single place to refer to performative definitions, a 
much broader selection of performatives than has been specified to date, and clearer 
applicability to a much broader set of single and multi-message interactions than has 
been previously defined. 

Much remains to be done in the field of developing an ACL based on Joint 
Intention Theory, however. For example, the semantics of the NOTUNDERSTOOD 
performative, which is important in fielded systems, has yet to be correctly defined in 
JI semantics. Of even broader impact, we need to apply the developments of group-
theoretic semantics of [16] to all of the performatives to provide the flexibility of 
groups of agents as senders and/or recipients. There are a large number of 
applications where this capability is useful in multiagent systems, when agents acting 
as representatives of institutions and organizations (e.g. sales and purchasing agents) 
interact with each other. 
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Abstract. The Cognitive Agent Specification Language (CASL) is a
framework for specifying and verifying complex communicating multia-
gent systems. In this paper, we extend CASL to incorporate a formal
model of means-ends reasoning suitable for a multiagent context. In par-
ticular, we define a simple model of cooperative ability, give a definition
of rational plans, and show how an agent’s intentions play a role in de-
termining her next actions. This bridges the gap between intentions to
achieve a goal and intentions to act. We also define a notion of subjec-
tive plan execution and show that in the absence of interference, an agent
that is able to achieve a goal, intends to do so, and is acting rationally
will eventually achieve it.

1 Introduction

Most agent theories [1, 25] suffer from a similar problem: they axiomatize the
relation between the different mental attitudes of the agents and the physical
states of the world; but they do not account for how the agents will achieve
their goals, how they plan and commit to plans. Ideally, an agent’s intention
to achieve a state of affairs in a situation should drive the agent to intend to
execute a plan that she thinks is rational in that situation. In other words, an
agent’s future directed intentions should lead her to adopt rational plans and
eventually achieve her intentions.

Another recent thread in agent theory introduces a procedural component
to the framework in an attempt to close the gap between agents’ intentions to
achieve a state of affairs and their intentional actions, as well as to support the
modeling of complex multiagent systems. One example of this is the Cognitive
Agent Specification Language (CASL) [32, 33], which is a framework for speci-
fying and verifying complex communicating multiagent systems. However, it is
somewhat restricted in the sense that it requires the modeler to specify agent
behavior explicitly, and the program that controls the agent’s actions need not
be consistent with the agent’s intentions, or do anything to achieve them.

In this paper, we propose a solution to this problem by extending CASL.
In particular, we define rational plans and ability in a multiagent context, and
use these notions to link future and present directed intentions. We introduce a
special action, the commit action, that makes the agent commit to a plan, and
define a meta-controller BehaveRationallyUntil that has the agent act rationally
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to achieve a specific goal by choosing and committing to a rational plan, and
carrying it out. We also define a notion of subjective execution of plans where
the agent must have the required knowledge to execute the plan. Then we show
that given that an agent has an intention, she will act to achieve it provided
that she is able to do so.

The paper is organized as follows: in the next section, we outline previous work
on CASL. In Section 3, we develop a simple formalization of cooperative ability for
agents working in a multiagent setting. In Section 4, we define rational plans, relate
future and present directed intentions, and discuss what it means for an agent to
behave rationally and execute plans subjectively.Wealso state a theorem that links
an agent’s intentions and abilities to the eventual achievement of her intentions.

2 CASL

In CASL [32, 33], agents are viewed as entities with mental states, i.e., knowl-
edge and goals, and the specifier can define the behavior of the agents in terms
of these mental states. CASL combines a declarative action theory defined in
the situation calculus with a rich programming/process language, ConGolog [5].
Domain dynamics and agents’ mental states are specified declaratively in the
theory, while system behavior is specified procedurally in ConGolog.

In CASL, a dynamic domain is represented using an action theory [27] for-
mulated in the situation calculus [21], a second order language for representing
dynamically changing worlds in which all changes are the result of named ac-
tions. CASL uses a theory that includes the following set of axioms:

– domain-independent foundational axioms describing the structure of situa-
tions [14],

– action precondition axioms, one per action,
– successor state axioms (SSA), one per fluent, that encode both effect and

frame axioms and specify exactly when the fluent changes [26],
– initial state axioms describing what is true initially including the mental

states of the agents,
– axioms identifying the agent of each action, and,
– unique name axioms for actions.

Within CASL, the behavior of agents is specified using the notation of the
logic programming language ConGolog [5], the concurrent version of Golog [19].
A typical ConGolog program is composed of a sequence of procedure declara-
tions, followed by a complex action. Complex actions can be composed using
constructs that include the ones given in Table 1.1 These constructs are mostly

1 Since we have predicates that take programs as arguments, we need to encode pro-
grams as first-order terms as in [5]. For notational simplicity, we suppress this en-
coding and use formulae as terms directly. Also, here φ is used to denote a formula
whose fluents may contain a placeholder now that stands for the situation in effect
at the time that φ is tested. φ(s) is the formula that results from replacing now with
s. Where the intended meaning is clear, we suppress the placeholder.
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Table 1. Examples of ConGolog Constructs

a, primitive action
φ?, wait for a condition
(δ1; δ2), sequence
(δ1 | δ2), nondeterministic choice
πx.δ, nondet. choice of argument
If φ Then δ1 Else δ2 EndIf, conditional
While φ Do σ EndWhile, while loop
β(−→p ), procedure call.

self-explanatory. Intuitively, πx.δ nondeterministically picks a binding for the
variable x and performs the program δ for this binding of x. ConGolog also
supports nondeterministic iteration, concurrent execution with and without pri-
orities, and interrupts. To deal with multiagent processes, primitive actions in
CASL take the agent of the action as argument.

The semantics of the ConGolog process description language is defined in
terms of transitions, in the style of structural operational semantics [24]. Two
special predicates Final and Trans are introduced, and are characterized by
defining axioms for each of the above constructs, where Final(δ, s) means that
program δ may legally terminate in situation s, and where Trans(δ, s, δ′, s′)
means that program δ in situation s may legally execute one step, ending in
situation s′ with program δ′ remaining. The overall semantics of a ConGolog
program is specified by the Do relation:

Do(δ, s, s′) .= ∃δ′ · (Trans∗(δ, s, δ′, s′) ∧ Final(δ′, s′)).

Do(δ, s, s′) holds if and only if s′ can be reached by performing a sequence of
transitions starting with program δ in s, and the remaining program δ′ may
legally terminate in s′. Here, Trans∗ is the reflexive transitive closure of the
transition relation Trans.

CASL allows the specifier to model the agents in terms of their mental states
by including operators to specify agents’ information (i.e., their knowledge),
and motivation (i.e., their goals or intentions). Following [22, 30], CASL models
knowledge using a possible worlds account adapted to the situation calculus.
K(agt, s′, s) is used to denote that in situation s, agt thinks that she could be in
situation s′. s′ is called a K-alternative situation for agt in s. Using K, the knowl-
edge or belief of an agent, Know(agt, φ, s), is defined as ∀s′(K(agt, s′, s) ⊃ φ(s′)),
i.e. agt knows φ in s if φ holds in all of agt’s K-accessible situations in s. Two
useful abbreviations are also defined: KWhether(agt, φ, s) .= Know(agt, φ, s)
∨Know(agt,¬φ, s), i.e., agt knows whether φ holds in s, and KRef(agt, θ, s) .=
∃t.Know(agt, t = θ, s), i.e., agt knows who/what θ is. In CASL, K is constrained
to be reflexive, transitive, and euclidean in the initial situation to capture the
fact that agents’ knowledge is true, and that agents have positive and negative
introspection. As shown in [30], these constraints then continue to hold after any
sequence of actions since they are preserved by the successor state axiom for K.



A Model of Rational Agency for Communicating Agents 245

Scherl and Levesque [30] showed how to capture the changes in beliefs of
agents that result from actions in the successor state axiom for K. These include
knowledge-producing actions that can be either binary sensing actions or non-
binary sensing actions. Following [18], the information provided by a binary
sensing action is specified using the predicate SF (a, s), which holds if the action
a returns the binary sensing result 1 in situation s. Similarly for non-binary
sensing actions, the term sff(a, s) is used to denote the sensing value returned
by the action.

Lespérance [17] extends the SSA of K in [30] to support two variants of
the inform communicative action, namely informWhether and informRef. Here,
inform(inf, agt, φ), informWhether(inf, agt, ψ), and informRef(inf, agt, θ)
mean that inf informs agt that φ currently holds, inf informs agt about the
current truth value of ψ, and inf informs agt of who/what θ is, respectively. The
preconditions of these three actions are as follows:2

Poss(inform(inf, agt, φ), s) ≡
Know(inf, φ, s) ∧ ¬Know(inf,KWhether(agt, φ, now), s),

Poss(informWhether(inf, agt, ψ), s) ≡
KWhether(inf, ψ, s) ∧ ¬Know(inf,KWhether(agt, ψ, now), s),

Poss(informRef(inf, agt, θ), s) ≡
KRef(inf, θ, s) ∧ ¬Know(inf,KRef(agt, θ, now), s).

In other words, the agent inf can inform agt that φ, iff inf knows that φ currently
holds, and does not believe that agt currently knows the truth value of φ, and
similarly for informWhether and informRef. The SSA for K is defined as follows:

K(agt, s∗, do(a, s)) ≡ ∃s′. [K(agt, s′, s) ∧ s∗ = do(a, s′) ∧ Poss(a, s′) ∧
((BinarySensingAction(a) ∧Agent(a) = agt) ⊃ (SF (a, s′) ≡ SF (a, s))) ∧
((NonBinarySensingAction(a) ∧Agent(a) = agt) ⊃

(sff(a, s′) = sff(a, s))) ∧
∀inf, φ. (a = inform(inf, agt, φ) ⊃ φ(s′)) ∧
∀inf, ψ. (a = informWhether(inf, agt, ψ) ⊃ (ψ(s′) ≡ ψ(s))) ∧
∀inf, θ. (a = informRef(inf, agt, θ) ⊃ (θ(s′) = θ(s)))].

This says that after an action happens, every agent learns that it has happened.
Moreover, if the action is a sensing action, the agent performing it acquires
knowledge of the associated proposition or term. Furthermore, if the action in-
volves someone informing agt that φ holds, then agt knows this afterwards, and

2 We modified the preconditions given in CASL by adding the second clause on the
right side. Also, the SSA for K presented here is a bit different from that of CASL,
and similar to the one given by Lespérance [17].



246 S.M. Khan and Y. Lespérance

similarly for informWhether and informRef. Note that since all agents are aware
of all actions, with inform(inf, agt, φ), every agent learns that φ is true. How-
ever, with informWhether(inf, agt, ψ) and informRef(inf, agt, θ), only the
addressee learns the truth value/value of ψ/θ. So with the latter, there is some
privacy in the communication.3 Also note that this axiom only handles knowl-
edge expansion, not revision.

CASL extends the framework described in [15] to incorporate goal expansion
and a limited form of goal contraction. Goals or intentions are modeled using
an accessibility relation W over possible worlds (situations, in this case). The
W -accessible worlds for an agent are the ones where she thinks that all her goals
are satisfied. W -accessible worlds may include worlds that the agent thinks are
impossible, unlike Cohen and Levesque’s [1] G-accessible worlds. But intentions
are defined in terms of the more primitive W and K relations so that the inten-
tion accessible situations are W -accessible situations that are also compatible
with what the agent knows, in the sense that there is a K-accessible situation
in their history.4 This guarantees that agents’ intentions are realistic, that is,
agents can only intend things that they believe are possible. Thus we have:

Int(agt, ψ, s) .=
∀now, then.[W (agt, then, s) ∧K(agt, now, s) ∧ now ≤ then] ⊃ ψ(now, then).

This means that the intentions of an agent in s are those formulas that are true
for all intervals between situations now and then where the situations then are
W -accessible from s and have a K-accessible situation in their history, namely
now. Intentions are future oriented, and any goal formula will be evaluated with
respect to a finite path defined by a pair of situations, a begining situation now
and an ending situation then. This formalization of goals can deal with both
achievement goals and maintenance goals. An achievement goal ψ is said to be
eventually satisfied if ψ holds in some situation s′ over the interval between now
and then.5 Eventually(ψ, now, then) is defined as ∃s′.(now ≤ s′ ≤ then∧ψ(s′)).
In [31], Shapiro showed that positive and negative introspection of intentions
can be modeled by placing the following constraints on K and W :

a) ∀s1, s2, s. K(agt, s1, s) ∧G(agt, s2, s) ⊃ G(agt, s2, s1),
b) ∀s1, s2, s. K(agt, s1, s) ∧G(agt, s2, s1) ⊃ G(agt, s2, s).

(a) yields positive introsepection of intentions, whereas (b) gives negative intro-
spection. To make sure that agents’ wishes and intentions are consistent, W is
also constrained to be serial.

3 In [13], we show how one can formalize inform actions to appear as informWhether
actions to third parties, thus enhancing privacy.

4 Intention accessible situations G(agt, s′, s) are defined using K and W as
W (agt, s′, s) ∧ ∃s′′. K(agt, s′′, s) ∧ s′′ ≤ s′, that is, a G-accessible situation is a
W -accessible situation that has a K-accessible situation in its history.

5 Once again, now and then are not actual situations, but placeholders for situations
that are bound in the definition.
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The SSA for W which handles intention change in CASL, has the same struc-
ture as a SSA for a domain dependent fluent. In the following, W+(agt, a, s′, s)
(W−(agt, a, s′, s), respectively) denotes the conditions under which s′ is added
to (dropped from, respectively) W as a result of the action a:

W (agt, s′, do(a, s)) ≡ [W+(agt, a, s′, s) ∨ (W (agt, s′, s) ∧ ¬W−(agt, a, s′, s))].

An agent’s intentions are expanded when it is requested something by another
agent. After the request(req,agt,ψ) action, agt adopts the goal that ψ, unless she
has a conflicting goal or is not willing to serve req for ψ. Therefore, this action
should cause agt to drop any paths in W where ψ does not hold. This is handled
in W−:

W−(agt, a, s′, s) .= IncompRequest(agt, a, s′, s),

IncompRequest(agt, a, s′, s) .= [∃req, ψ. a = request(req, agt, ψ)
∧ Serves(agt, req, ψ, s) ∧ ¬Int(agt,¬ψ, s)
∧ ∃now. K(agt, now, s) ∧ now ≤ s′ ∧ ¬ψ(do(a, now), s′)].

Here, the request action is considered a primitive action. The preconditions of
request are:

Poss(request(req, agt, φ), s) ≡ Int(req, φ, s).

A limited form of intention contraction is also handled in CASL. Suppose that
the agent req requests agt that ψ and later decides it no longer wants this. The
requester req can perform the action cancelRequest(req,agt,ψ). This action causes
agt to drop the goal that ψ. cancelRequest actions are handled by determining
what the W relation would have been if the corresponding request action had
never happened. This type of goal contraction is handled in W+, which can be
defined as follows:

W+(agt, a, s′, s) .= ∃s1. W (agt, s′, s1) ∧ ∃a1. do(a1, s1) ≤ s ∧ Cancels(a, a1)
∧ (∀a∗, s∗. do(a1, s1) < do(a∗, s∗) ≤ s ⊃ ¬W−(agt, a∗, s′, s∗)).

Suppose that a cancelRequest action occurs in situation s. The W relation is first
restored to the way it was before the corresponding request action occured, i.e.,
in s1. Then starting just after the request, all the actions a∗ that occured in the
history of s (say in situation s∗) are considered, and any situation s′ in W that
satisfies W−(agt, a∗, s′, s∗) is removed from W . Cancels(a, a1) can be defined
as follows:

Cancels(a, a′) .=
[∃req, ψ. a′ = request(req, agt, ψ) ∧ a = cancelRequest(req, agt, ψ)].

A cancelRequest action can only be executed if a corresponding request action
has occured in the past:

Poss(cancelRequest(req, agt, φ), s) ≡ ∃s′. do(request(req, agt, φ), s′) ≤ s.
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CASL has been encoded in the Prototype Verification System (PVS) [23]
to form the basis of a verification environment for CASL, CASLve [33], that
uses theorem proving. CASLve makes it possible to verify properties of multi-
agent specifications and prove various types of results such as safety, liveness,
termination, etc.

3 Simple Cooperative Ability

An agent cannot be expected to eventually achieve an intention just because
she has that intention, and she is acting rationally. We also need to make sure
that the agent is capable of achieving the goal in the current situation [16]. In a
single agent domain, an agent’s ability can roughly be defined as her knowledge
of a plan that is physically and epistemically executable and whose execution
achieves the goal. However, modeling multiagent ability is a more complex prob-
lem, since in this case we need to consider the agents’ knowledge about each
other’s knowledge and intentions as well as how they choose actions, behave
rationally, etc. In this section, we develop a simple model of cooperative ability
of agents suitable for a limited multiagent context in the absence of exogenous
actions, i.e., actions whose performance is not intended by the planning agent.
In an open multiagent framework, agents’ actions may interfere with each other,
possibly perturbing their plans. In some cases, there are multiple strategies to
achieve a common goal, and the agents may fail unless they coordinate their
choice of strategy by reasoning about each other’s knowledge, ability, and ratio-
nal choice. Moreover, agents may have conflicting goals or intentions. To sim-
plify, we restrict our framework by only allowing plans where the actions that
the other agents must do are fully specified, i.e., action delegation is possible,
but (sub)goal delegation is not. The primary agent, who is doing the planning,
is constrained to know the whole plan in advance. Thus, the primary agent is
allowed to get help from others, but she can only ask other agents to perform
specific actions. As a consequence, we do not need to model the fact that the
other agents behave rationally.

When dealing with ability, it is not enough to say that the agent is able to
achieve a goal iff she has a physically executable plan, and any execution of this
plan starting in the current situation achieves the goal. We should also take into
account the epistemic and intentional feasibility of the plan. This is necessary
as physical executability does not guarantee that the executor will not get stuck
in a situation where it knows that some transition can be performed, but does
not know which. For example, consider the plan (a; If φ Then b Else c EndIf) |
d, where actions a, b, c and d are always possible, but where the agent does
not know whether φ holds after a. If the agent follows the branch where the
first action is a, she will get stuck due to incomplete knowledge. Hence, the
result of deliberation should be a kind of plan where the executor will know
what to do next at every step, a plan that does not itself require deliberation
to interpret. To deal with this, De Giacomo et al. [4] defined the notion of
Epistemically Feasible Deterministic Programs (EFDPs) for single agent plans
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and characterized deliberation in terms of it. Note that EFDPs are deterministic,
since they are the result of deliberation and their execution should not require
making further choices or deliberation.

Since we are dealing with cooperative multiagent ability, we also need to make
sure that the cooperating agents intend to perform the requested actions when it
is their turn to act. In our framework, we extend the notion of EFDP to handle
simple multiagent plans. A program is called an Epistemically and Intentionally
Feasible Deterministic Program (EIFDP) in situation s for agent agt, if at each
step of the program starting at s, agt always has enough infomation to execute
the next action in the program, or knows that the executor of the next action is
another agent, and that this agent has enough information to execute this action
and intends to do it. Put formally:

EIFDP (agt, δ, s) .= ∀δ′, s′. T rans∗(δ, s, δ′, s′) ⊃ LEIFDP (agt, δ′, s′),

LEIFDP (agt, δ, s) .=
Know(agt, F inal(δ, now) ∧ ¬∃δ′, s′. T rans(δ, now, δ′, s′), s) ∨
∃δ′. Know(agt,¬Final(δ, now) ∧ UTrans(δ, now, δ′, now), s) ∨
∃δ′, a. Know(agt,¬Final(δ, now)

∧Agent(a) = agt ∧ UTrans(δ, now, δ′, do(a, now)), s) ∨
∃δ′, agt′. Know(agt,¬Final(δ, now) ∧ ∃a. UTrans(δ, now, δ′, do(a, now))

∧Agent(a) = agt′ �= agt

∧ Int(agt′,∃s′. s′ ≤ then ∧Do(a, now, s′), now), s),

UTrans(δ, s, δ′, s′) .= Trans(δ, s, δ′, s′) ∧
∀δ′′, s′′. T rans(δ, s, δ′′, s′′) ⊃ δ′′ = δ′ ∧ s′′ = s′.

Thus to be an EIFDP, a program must be such that all configurations reach-
able from the initial program and situation, involve a Locally Epistimically
and Intentionally Feasible Deterministic Program (LEIFDP). A program is a
LEIFDP in a situation with respect to an agent, if the agent knows that the
program is currently in its Final configuration and no further transitions are
possible, or knows that she is the agent of the next action and knows what
unique transition (with or without an action) it can perform next, or knows
that someone else agt′ is the agent of the next action, that agt′ knows what
the action is and intends to do it next, and knows what unique transition the
program can perform next with this action. Here, UTrans(δ, s, δ′, s′) means
that the program δ in s can perform a unique transition, which takes the
agent to s′ with the remaining program δ′. Note that when it is the other
agent’s turn, agt does not have to know exactly what the next action is, i.e.,
she does not have to know all the parameters of the next action. However,
at every step of the program, she must know what the remaining
program is.
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EIFDPs are suitable results for planning. They can always be executed suc-
cessfully and since they are deterministic, they do not require further deliberation
to execute. Using EIFDP, the ability of an agent can be defined as follows:6

Can(agt, ψ(now, then), s) .= ∃δ. Know(agt, EIFDP (agt, δ, now)
∧ ∃s′. Do(δ, now, s′) ∧ ∀s′. (Do(δ, now, s′) ⊃ ψ(now, s′)), s).

Thus, an agent can achieve a goal in situation s, iff she knows of a plan δ that
is an EIFDP, is executable starting at s, and any possible execution of the plan
starting in the current situation brings about the goal.

We use the following as our running example (adapted from [22]) throughout
the paper. Consider a world in which there is a safe with a combination lock. If
the safe is locked and the correct combination is dialed, then the safe becomes
unlocked. However, dialing the incorrect combination will cause the safe to ex-
plode. The agent can only dial a combination if the safe is intact, and it is not
possible to change the combination of the safe. Initially, the agent Agt1 has the
intention to open the safe, but does not know the combination. However, she
knows that Agt2 knows it. She also knows that Agt2 is willing to serve her, and
that Agt2 does not have the intention of not informing her of the combination
of the safe. Here are some of the axioms that we use to model this domain:

sf1) Poss(a, s) ⊃ [Exploded(do(a, s)) ≡
∃c, agt. (a = dial(agt, c) ∧ Comb(s) �= c) ∨ Exploded(s)].

sf2) Poss(dial(agt, c), s) ≡ ¬Exploded(s).
sf3) Agent(dial(agt, c)) = agt.

sf4) ¬Exploded(S0).
sf5) W (Agt1, s, S0) ≡ ¬Locked(s).

The first axiom, a successor state axiom, states that the safe has exploded after
doing action a iff a denotes the action of dialing the wrong combination, or if
the safe has already exploded. The second axiom, a precondition axiom, states
that it is possible to dial a combination for the safe in situation s iff the safe
is intact in s. The third axiom is an agent axiom and defines the agent of the
dial action. The last two axioms are initial situation axioms, and state that the
safe is initially intact, and that Agt1 initially only intends to open the safe,
respectively. From now on, we will use Dsafe to denote the set of axioms that
we use to model this safe domain (see [13] for the complete axiomatization).

Now, consider the follwing plan:7

σsafe = requestAct(Agt1, Agt2, informRef(Agt2, Agt1, Comb(s)));
informRef(Agt2, Agt1, Comb(s)); dial(Agt1, Comb(s)).

6 Note that this definition of Can handles non-achievement goals, as there are two
situation placeholdes in ψ, i.e., now and then. An achievement goal ψ(now) can be
placed inside an Eventually block to provide both now and then.

7 requestAct is an abbreviation introduced in the next section; it denotes a special kind
of request, namely, the request to perform an action.
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So, the plan is that Agt1 will request Agt2 to inform her of the combination of
the safe, Agt2 will inform Agt1 of the combination of the safe, and finally, Agt1
will dial the combination to open the safe. We claim that σsafe is an EIFDP in
the initial situation for Agt1, and that Agt1 is able to achieve her intention of
opening the safe in the initial situation:

Theorem 1.

a. Dsafe |= EIFDP (Agt1, σsafe, S0).
b. Dsafe |= Can(Agt1, Eventually(¬Locked), S0).

(a) holds as all configurations reached by σsafe starting in S0 are LEIFDP. (b)
holds as Agt1 knows of a plan (i.e., σsafe), which she knows is an EIFDP and
is executable, and knows that any execution of this plan ends up in a situation
where the safe is unlocked.

4 From Intentions That to Intentions to Act

In this section, we define rational plans and extend CASL to model the role of
intention and rationality in determining an agent’s actions. This bridges the gap
between future directed intentions and present directed ones. We also discuss a
notion of subjective plan execution and present a theorem that relates intention
and ability to the eventual achievement of intended goals.

Before going further, let us discuss the communication actions that we will
use in our framework. Like in CASL, we use three primitive informative com-
munication actions, namely, inform, informWhether, and informRef. However,
unlike in CASL, we provide two intention transfer communication actions, re-
quest and requestAct, and these are defined in terms of inform.8 The request
action can be used by an agent to request another agent to achieve some state
of affairs, whereas requestAct involves an agent’s request to another agent to
perform some particular complex action starting in the next situation. Formally,

request(req, agt, φ) .= inform(req, agt, Int(req, φ, now)),

requestAct(req, agt, δ) .= request(req, agt,∃s′, a. Do(δ, do(a, now), s′)
∧ now < s′ ≤ then ∧Agent(δ) = agt).

Here Agent(δ)=agt means that the agent of all actions in δ is agt. In our specifi-
cation, we only allow sincere requests. That is, an agent can perform a request
if the request is not contradictory to her current intentions. So defining requests
as informing of intentions is reasonable. However, since requests are modeled in

8 A similar account of request was presented by Herzig and Longin [9], where it is de-
fined as inform about intentions, and the requested goals are adopted via cooperation
principles.
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terms of inform, and since we are using true belief, the usual preconditions of
the inform action are relaxed:

Poss(inform(inf, agt, φ), s) ≡
Know(inf, φ′, s) ∧ ¬Know(inf,KWhether(agt, φ′, now), s),

where, φ′ is φ with all Int(inf, φ′′, now) are replaced by ¬Int(inf,¬φ′′, now).
This axiom says that the agent inf can inform agt that φ, iff inf knows that φ′

currently holds, and does not believe that agt currently knows the truth value of
φ′, where φ′ is defined as above. Note that, if we use φ instead of φ′ in the above
axiom, the account would be overly strict. For instance, in the safe domain, σsafe

is a rational plan for Agt1 in the initial situation. However, initially, Agt1 does
not have the intention that Agt2 informs her the combination of the safe. So if
we use φ instead of φ′ in the axiom, we cannot show that σsafe is rational, since
it requires Agt1 to know that she has the intention before she can inform about
it. So we relax the requirements so that the agent only needs to know that she
does not have the opposite intention.9

To facilitate the cancellation of requests, we also provide two actions, namely,
cancelRequest, and cancelReqAct. Unlike CASL where cancelRequest is primitive,
we define it using inform. These two actions are defined as follows:

cancelRequest(req, agt, ψ) .= inform(req, agt,¬Int(req, ψ, now)),

cancelReqAct(req, agt, δ) .=
cancelRequest(req, agt,∃s∗, s+, prev. prev = do(requestAct(req, agt, δ), s+)

∧ s+ < now ≤ s∗ ≤ then ∧Do(δ, prev, s∗) ∧Agent(δ) = agt).

To keep the theory simple, we only use these aforementioned communicative acts
(see [6] and [12] for definitions of a much richer array of speech acts).

Now let us look at what plans are rational for an agent. To keep the theory
simple, we only consider conditional plans. An agent that is acting rationally,
should prefer some plans to others. To this end, we define an ordering on plans:

' (agt, δ1, δ2, s)
.= ∀s′. K(agt, s′, s) ∧ ∃s′′. Do(δ2, s

′, s′′) ∧W (agt, s′′, s)
⊃ [∃s′′. Do(δ1, s

′, s′′) ∧W (agt, s′′, s)].

That is, a plan δ1 is as good as another plan δ2 in situation s for an agent agt iff for
all W -accessible situations that can be reached by following δ2 from a situation
that is K-accessible from s (say s′), there exists a W -accessible situation that
can be reached from s′ by following δ1. In other words, δ1 is at least as good as
δ2 if it achieves the agent’s goals in all the possible situations where δ2 does.

9 In [13], we discuss a way to avoid this change in the usual preconditions of inform
by building commitment into plans.
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Using EIFDP and the ' relation, we next define rational plans. A plan δ is
said to be rational in situation s for an agent agt if the following holds:

Rational(agt, δ, s) .= ∀δ′. ' (agt, δ′, δ, s) ⊃ ' (agt, δ, δ′, s)
∧ EIFDP (agt, δ, s).

Thus, a rational plan in a situation s, is a plan that is as good as any other plan
in s and is an EIFDP in s.

For example, consider the plan σsafe. We claim that σsafe is as good as any
other plan available to Agt1 in the initial situation, and that σsafe is rational in
the initial situation.

Theorem 2.

a. Dsafe |= ∀σ. ' (Agt1, σsafe, σ, S0).
b. Dsafe |= Rational(Agt1, σsafe, S0).

Since this plan achieves Agt1’s intention of opening the safe starting in any
situation that is K-accessible to S0, (a) holds. (b) follows from the fact that
σsafe is as good as any other plan in S0 and is an EIFDP in S0.

In most cases, there are many rational plans (i.e., ways of achieving as many
goals as possible). The decision of which plan the agent commits to is made
based on pragmatic/non-logical grounds. We do not model this here. Instead,
we introduce a commit(agt, δ) action that will model the agent’s commiting to
a particular plan δ, more specifically, commiting to executing δ next. The action
precondition axiom for the commit action is as follows:

Poss(commit(agt, δ), s) ≡ ¬Int(agt,¬∃s∗. s ≤ s∗ ≤ then ∧Do(δ, now, s∗), s).

That is, the agent agt can commit to a plan δ is situation s, iff the agent currently
does not have the intention that the actions in the plan do not happen next.

Next, we extend the SSA for W to handle intention revision as a result of
the agent’s commitment to a rational plan, and also as a result of other agents’
requestAct and cancelReqAct actions. This axiom has a similar structure to that
of CASL; however, we modify W− as follows:

W−(agt, a, s′, s) .= IncompRequest(agt, a, s′, s) ∨ IncompCommit(agt, a, s′, s).

Here, IncompCommit handles the expansion of the agent’s intentions that occur
when a commit action occurs. We define IncompCommit as follows:

IncompCommit(agt, a, s′, s) .= [∃δ. a = commit(agt, δ) ∧Rational(agt, δ, s)
∧ ∃s∗. s∗ ≤ s′ ∧K(agt, s∗, s)
∧ ¬∃s∗∗. (s∗ < s∗∗ ≤ s′ ∧Do(δ, do(a, s∗), s∗∗))].

So, after the performance of a commit action in s, a W -accessible situation s′

in s will be dropped from agt’s new set of W -accessible situations if the plan to
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which agt is commiting is rational, and the committed to action does not happen
next over the interval between the W -accessible situation s′ and its predecessor
s∗ that is K-accessible from the current situation s.

The definition of W+ remains unchanged. Note that if exogenous actions
are allowed, agents need to revise their commitments when an exogenous action
occurs by uncommiting from the currently committed plan, and committing to
a new rational plan. We return to this issue in Section 5.

We now show that our formalization of intentions has some desirable
properties:

Theorem 3.

a. |= ¬Int(agt,¬φ, s) ∧ Serves(agt, req, φ, s) ⊃
Int(agt, φ, do(request(req, agt, φ), s)).

b. |= ¬Int(agt,¬∃s′. Do(δ, now, s′) ∧ now ≤ s′ ≤ then, s) ⊃
Int(agt,∃s′. Do(δ, now, s′) ∧ now ≤ s′ ≤ then, do(commit(agt, δ), s)).

(a) says that if an agent agt does not have the intention that not φ in s, then she
will have the intention that φ in the situation resulting from another agent req’s
request to agt that φ in s, provided that she is willing to serve req on φ . (b) states
that if an agent agt does not have the intention of not performing a complex action
δ in s, then she will have the intention of performing it after she commits to it.

commit provides a way to link future directed intentions and present directed
ones. We next specify a generic meta-controller for an agent that arbitrarily chooses
a rational plan, commits to it, and executes it. Then we can prove a theorem about
the relationship between intention, ability, and the eventual achievement of an in-
tended goal. This theorem serves as a proof of soundness of our agent theory.

The following meta-controller allows us to refer to the future histories of
actions that may occur for an agent who is behaving rationally until ψ holds.
Rational behavior until ψ can be defined as follows (we assume that there are
no exogenous actions):

BehaveRationallyUntil(agt, ψ(now)) .=
πδ. Rational(agt, δ, now)?; commit(agt, δ);
While ¬ψ(now) Do

If ∃a. Int(agt, do(a, now) ≤ then, now) ∧Agent(a) = agt) Then
[πa. (Int(agt, do(a, now) ≤ then, now) ∧Agent(a) = agt)?; a]

Else
πagt′. [Int(agt,∃a. do(a, now) ≤ then

∧Agent(a) �= agt ∧Agent(a) = agt′, now)?;
(πa′. Int(agt′, do(a′, now) ≤ then, now)?; a′)]

EndIf
EndWhile.
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That is, rational behavior until ψ can be defined as arbritarily choosing a rational
plan, committing to it, and then executing it as long as ψ does not hold. A
rational plan can have actions by the planning agent as well as actions by other
agents. When it is the planning agent’s turn to act, she should perform the
action that she intends to perform next; otherwise, she should wait for the other
agent to act. When it is the other agent’s turn, it will perform the action that
it is supposed to perform, because rational plans are EIFDP, and thus the other
agent must intend to do the action required by the plan. Note that we only deal
with achievement goals here.

One problem with CASL is that the execution of plans is viewed from the sys-
tem’s perspective rather than from the agents’ perspective. So, although CASL
includes operators that model agents’ knowledge and goals, the system behavior
is simply specified as a set of concurrent processes. These processes may refere
to the agents’ mental states, but they don’t have to. To deal with this prob-
lem, Lespérance [17] proposed an account of subjective plan execution in CASL
that ensures that plans can be executed by the relevant agents based on their
knowledge state. Here we extend this to deal with multiagent plans (i.e. plans
with actions by agents other than the executor) and to consider other agents’
intentions. We define the subjective execution construct Subj(agt, δ) as follows:

Trans(Subj(agt, δ), s, γ, s′) ≡ ∃δ′. (γ = Subj(agt, δ′) ∧
[Know(agt, T rans(δ, now, δ′, now), s) ∧ s = s′ ∨
∃a. (Know(agt, T rans(δ, now, δ′, do(a, now)) ∧Agent(a) = agt, s)

∧ s′ = do(a, s)) ∨
∃agt′. (Know(agt,∃a. Trans(δ, now, δ′, do(a, now)) ∧Agent(a) = agt′

∧ Int(agt′,∃s∗. s∗ ≤ then ∧Do(a, now, s∗), now), s)
∧ s′ = do(a, s))]),

F inal(Subj(agt, δ), s) ≡ Know(agt, F inal(δ, now), s).

This means that when a program is executed subjectively by an agent agt, the
system can make a transition only if agt knows that it can make this transition,
and if the transition involves a primitive action by another agent, then the
transition is possible provided that agt also knows that the other agent will
intend to perform the action. A subjective execution may legally terminate only
if the agent knows that it may.

Next, we present our “success theorem”:10

Theorem 4 ((From Commitment and Ability to Eventuality)).

|= [OInt(agt,Eventually(γ, now, then), s)
∧ Can(agt,Eventually(γ, now, then), s)

10 The construct AllDo is a strict version of Do that requires that all possible executions
of a program terminate successfully; see [17] for a formal definition.
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∧ Int(agt,Eventually(ψ, now, then), s)] ⊃
AllDo(Subj(agt, BehaveRationallyUntil(agt, ψ)), s).

Intuitively, if in some situation, an agent intends to achieve some goal and is able
to achieve all its intentions, then the agent will eventually achieve the goal in
all rational histories from that situation. OInt(agt, ψ, s) means that ψ is all the
intentions that agt has in s. This construct must be used as we have to assume
that the agent is able to achieve all her intentions. If this is not the case, the agent
may have to choose between some of its goals and the BehaveRationallyUntil
operator will not guarantee that a specific goal (i.e., ψ) will be achieved. If there
are exogenous actions, then a more generic meta-controller can be defined. We
discuss this in the next section.

We also have the following corrolary for the safe domain:

Theorem 5.

Dsafe |= AllDo(Subj(Agt1, BehaveRationallyUntil(Agt1,¬Locked)), S0).

We have shown in Theorem 1(b) that Agt1 can achieve her intention of opening
the safe in the initial situation. Moreover, by sf5, the only intention of Agt1 is
to open the safe. It follows from Theorem 4 that Agt1 will eventually open the
safe if she behaves rationally starting in S0 (see [13] for a complete proof).

5 Discussion and Future Work

In this paper, we have presented a formal theory of agency that deals with
simple multiagent cooperation and shows how future directed intentions and
present directed ones can be related. An agent’s current rational plans depend
on her current intentions. The commit action models how the agent’s intentions
can be updated to include a commitment to a rational plan. Using this, we have
formulated a planning framework for multiple cooperating and communicating
agents in CASL. We specified how an agent’s future directed intentions will lead
the agent to adopt a rational plan and then carry it out using the meta-controller
BehaveRationallyUntil.

To relate agents’ intentions with their actions, Cohen and Levesque [1, 2]
required that agents eventually drop all their intentions either because they had
been achieved or because they were viewed as impossible to achieve (AKA the
no infinite deferral assumption). However, this assumption should follow from
other axioms of the theory, rather than be imposed separatly. A similar account
was presented by Rao and Georgeff [25]. A more intuitive account was presented
in [35], where Singh showed that rather than having it as an assumption, the
no infinite deferral principle can be derived from the theory. However, he does
not explicitly address the interaction between knowledge and actions and its
relationship with ability. Another account was presented by Sadek [28], where
he incorporated a backward chaining planning mechanism in his framework.
However, his account is limited in the sense that it uses hardcoded perlocutionary
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or rational effects of actions rather than actual effects. Although independently
motivated, our account closely resembles the one in [20], where a similar notion of
commitment to actions was introduced to relate intentions and actions. However,
that framework does not model rationality and provide a success theorem. There
has also been related work that tries to extend agent programming languages to
support declarative goals [11, 3, 29].

It should be noted that our formalization views communication acts as actions
that change the mental states of the participants, i.e. our semantics of commu-
nication acts is mentalistic in the tradition of [2, 6]. Recently, there have been
many proposals for semantics of communication acts based on social commit-
ments [7, 8]. The commitments associated with a conversation would be accessi-
ble to an observer and relevant social rules could be enforced. We think that it is
very important to capture the social aspects of agent comunication, the obliga-
tions that go with membership in an agent society. Enforcing these could also be
useful in certain contexts. But we think that communication cannot be reduced
to this public social commitments level. The reason agents communicate is that
this serves their private goals. One must usually reason about these goals and
the associated beliefs to really understand the agents’ behavior, for instance to
provide cooperative answers to queries, or to deal with the duplicitous behavior
of a competitor requesting a quote for a service in order to know the agent’s price
and make a lower bid. Thus, a mentalistic semantics is also essential. There has
also been a suggestion that public social commitment semantics support more
efficient reasoning and are more “tractable”. We think that this is an orthogonal
issue. The efficiency of reasoning about the content of communication depends on
the expressiveness of the language used to represent this content. It is possible
to reason about information/knowledge efficiently if one disallows incomplete
knowledge (e.g. disjunctive information). This is independent of whether the
content is the subject of a social commitment or of a private intention or belief.

The theory presented here is a part of our ongoing research on the semantics
of speech acts and communication in the situation calculus. In [13], we present
an extended version of our framework where we allow exogenous actions. To deal
with these unintended actions, an agent needs to revise the plan it is committed
to whenever an exogenous action occurs. In other words, she needs to un-commit
from the previously committed plan, consider the new set of rational plans, and
commit to one of them. We handle the un-commiting part in the SSA for W .
The agents’ commitment to a new rational plan is handled using a more general
meta-controller. This controller iterates the BehaveRationallyUntil program as
long as the goal remains un-achieved and there is a plan that is rational in the
current situation. In [13], we also define a notion of conditional commitment,
and model some simple communication protocols using it.

Our current agent theory is overly simplistic in many ways. One strict con-
straint that we have is that we do not allow cooperating agents to choose how
they will achieve the goals delegated to them by assuming that the planning
agent knows the whole plan in advance. Only one agent is assumed to do plan-
ning. In future work, we will try to relax this restriction and to model some
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interaction protocols that involve multiple planning agents. It would also be in-
teresting to develop tools to support multiagent programming that conform to
this specification.
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